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Abstract—The manual control of anaesthesia is still the dominant 

practice during surgery. An increasing number of studies have 

been conducted to explore the possibility of automating this 

process. The major difficulty in the design of closed-loop control 

during anaesthesia is the inherent patient variability due to 

differences in demographic and drug tolerance. These 

discrepancies are translated into the differences in 

pharmacokinetics (PK), and pharmacodynamics (PD). This study 

develops patient dose-response models and provides an adequate 

drug administration regimen for the anaesthesia to avoid under 

or over dosing of the patients. The controllers are designed to 

compensate for patients inherent drug response variability, to 

achieve the best output disturbance rejection, and to maintain 

optimal set point response. The results are evaluated and 

compared with traditional PID controller. The performance is 

confirmed in our simulation. 

 

I. INTRODUCTION 

The monitoring and control of unconsciousness in operating 
theatre is a major challenge to both anaesthetist and machines 
[1]. Depth of Anaesthesia (DoA), can be defined as the lack of 
response and recall to noxious stimuli [2]. The anaesthetic 
management of a surgical patient is a process that relies on the 
experience of an anaesthetist, since currently there are no direct 
means of assessing a patient level of consciousness during 
surgery [3]. The decision for the initial anaesthetic level is 
generally made by using the recommended drug dosages based 
on different patient characteristics, such as age and weight. The 
anaesthetist determines any subsequent alteration in the 
anaesthetic level by observing physical signs from the patient 
[4]. These physical signs, the indirect indicators of the depth of 
anaesthesia, may include changes in blood pressures or heart 
rate, lacrimation (the production of tears in the eyes), facial 
grimacing, muscular movements, spontaneous breathing, 
diaphoresis (sweating, especially sweating induced for medical 
reasons), and other signs that may predicate awareness [5]. 
However, they are not reliable indicators of changes in patient 

level of consciousness. Although an anaesthesiologist can 
adjust recommended anaesthetic dosages based on individual 
patient characteristics, these adjustments cannot always 
account for variability in patient responses to anaesthesia or 
changes in anaesthetic requirements during the course of 
surgery [6]. A commercial monitor is available to calculate the 
depth of anaesthesia in terms of the bispectral index (BIS). BIS 
is one of several systems used in anesthesiology to calculate the 
effects of specific anaesthetic drugs on the brain and to follow 
changes in the patient's level of sedation or hypnosis. In 
technical terms, the BIS itself is a complex mathematical 
algorithm that allows a computer inside an anaesthesia monitor 
to analyze data from a patient's electroencephalogram (EEG) 
during surgery. The BIS is an electroencephalogram (EEG) 
derived variable that quantifies the power and the phase 
couplings of the EEG at the different frequencies.     BIS, 
which has been in use since 1997, is a sort of automated direct 
measurement of the patient's condition, and indirect 
assessments of sedation [7]. The BIS system displays both raw 
data from the EEG and a single number between 100 
(indicating a conscious patient) and 0 (indicating the absence of 
brain activity) that represents the patient's degree of sedation. 
The target number for most anesthetized patients is between 50 
and 60.  

Model-based control has lead to enhanced control loop 
performance. One of the clearest model based technique is 
Internal Model Control (IMC). IMC has many advantages in 
control system design. The stability of the IMC is only 
depending on the controller and nominal plant. Unlike many 
other developments of modern control theory, IMC was widely 
accepted by control engineering practitioners. It is therefore 
quite natural to attempt to extend IMC concepts to various 
classes of systems. It is thus here that we utilize IMC concepts 
to monitor depth of anaesthesia in order to explore the 
advantages it brings to control [8]. 

The proposed IMC uses the approximate linear PK– PD 
model in the controller design, which will regulate patient’s 
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BIS by manipulating the infusion rate of isoflurane. Because of 
potential patient-model difference, a number of simulations are 
conducted to verify the robustness of the IMC controller. The 
proposed IMC scheme has also been tested for disturbance 
rejection and measurement signals. The performance obtained 
with the IMC controller is compared with the performances of 
the PID and MPC.  

The rest of the paper is presented as follows. A synopsis of 
the pharmacokinetic and pharmacodynamic models used for 
prediction and for control is given in the next section. The 
depth of anaesthesia control is introduced in Section 3. 
Experiments and results are discussed in Section 4. The 
conclusion section summarizes the main outcome of this 
strategy. 

II. DEPTH OF ANAESTHESIA AND MODELING 

A. Patient model 

The relationship between the drug effect and drug infusion 
rate can be described with PK and PD models. PK models 
illustrate the distribution of the drugs in the body and PD 
models describe the relationship between blood concentration 
of a drug and its systematic effect. These models can be 
identified for different kind of drugs by using a specific 
population of patients. The PK can be described by a three-
compartment model as shown in Fig. 1. 
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Figure 1. Patient model 
 

B. Pharmacokinetic model  

The human body is assumed to be divided into several 
compartments to drive the PK model [9]. In each compartment 
the drug concentration is homogeneous as shown in Fig. 2. The 
DoA model considers both propofol and remifentanil since this 
last one has a non-negligible effect on the DoA level. 

Hereafter,   
     (the remifentanil effect concentration) is 

assumed to be given and only the propofol chain is considered. 

The propofol infusion rate “     ” is called    .   
where   is the manipulated variable. This yields the 

continuous linear state space model: 
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Figure 2. DoA model 
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[L/kg] which represents the volume of compartment one per 

patient unit weight [kg]. 
 

                                                                                          

C. Pharmacodynamic model 

A PD model presented as a low-pass filter is used to relate 

the propofol plasma concentration   
    

 and the propofol effect 

concentration    
    

. This yields the following state space 
representation: 

 
               

    

  
    

                  

                                                                     

where                             

The effect-site concentration is related to DoA as  (Hill 

equation) [10]: 

            

  
 

    
 

   
                                                        

where     is: 

       
   

     

                                                                         

where      is the inverse of the effect-site compartment time 

constant and      is the half-maximal effective concentration. 

  is a steepness of the concentration response relation.  

 

 



III. DEPTH OF ANAESTHESIA CONTROL  

The IMC is a technique that is extensively used in chemical 

and process industries where uncertain models are quite 

common [11]. The internal model control philosophy relies on 

the Internal Model Principle, which states that control can be 

achieved only if the control system encapsulates, either 

implicitly or explicitly, some representation of the process to be 

controlled [12]. For example in an open loop control, the model 

of the process to be controlled is almost exactly known. Hence 

an inverse model is used for controlling the plant in this case. 

However, an exact model of the plant is not known in almost 

all practical cases and process-model mismatch is very 

common. These uncertainties and un-modeled dynamics in the 

system usually affect system performance. In such cases 

Internal Model Control (IMC) is found to be very useful. It is 

noted that the system model is explicitly used in the IMC 

structure unlike the classical controller structure [13]. 

The disadvantage of the linear IMC controller is that it 

cannot handle open-loop unstable systems and nonlinear 

models should be linearized for designing the controller. The 

block diagram of IMC is shown in Fig. 3. 
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Figure 3. Block diagram of IMC 
 

      is the controller. Assume   
     is a model of       . The 

inverse of the model of the process is equal      , 

 

         
                                                                                     

 

And if          
    , that is mean the model is an exact 

representation of the process. Then it is obvious that the 

setpoint and the output will always be equal. The process-

model mismatch is common; that means the invertible of the 

process model may not be easy and the system is often affected 

by noises and unknown disturbances. Thus the open-loop 

control is not able to keep output at setpoint. However, it forms 

the basis for the improvement of a control strategy that has the 

potential to accomplish ideal control. This method, IMC has 

the general structure shown in Fig. 3. The disturbance affecting 

the system is D(s) in Fig. 3. The desired input U(s) is 

introduced to both the model and the process [14]. The 

difference between the process output, Y(s), and with the 

output of the model is the signal      . The        can be found 

as: 

               
                                                        

From equation (6), if D(s) is equal to zero, then       is the 

difference between the process and its model. Also if       

  
    , then       is equal to the unknown disturbance. Thus 

      regarded as the information that is missing in the 

model,   
    , and can be used to improve control. The control 

signal can be write as, 

 

                      

                
         

                                                                

Because                    then the closed loop 

transfer function for IMC is equal to: 

 

     
                      

           
          

                                      

From equation (8), we can see that if         
      , and 

if          
    , that means perfect setpoint tracking and 

disturbance rejection is accomplished. Also can notice that, 

theoretically, if          
    , perfect disturbance rejection 

can still be realized provided         
      . Furthermore, to 

enhance robustness, the process model mismatch and its effects 

should be minimised. Because a distinct difference and failure 

to match between process and model performance usually 

occur at the high frequency end of the system’s frequency 

response, a low pass filter       is usually added to attenuate 

the effects of process and model discrepancies. As a result, the 

internal model controller is usually designed as the inverse of 

the process model in series with a low-pass filter.  The structure 

of the IMC in DoA is shown in Fig. 4. The blocks PK and PD 

together with the nonlinear equation represent the patient’s 

pharmacokinetics and pharmacodynamics, respectively.  Both 

PK and PD are single-input single-output linear time invariant 

systems. 

A linear IMC requires an internal linear time- invariant 

model as step response model to estimate the future output via 

past values of the inputs. 
The dynamic system for the process’s model is a 

combination of     and    models, which are mathematically 
represented as a sequences connection from input setting to 
concentration at the effect-compartment in series with the BIS 
amount as shown in Fig. 4. The above mathematical system 
can be represented mathematically as a sequences cascade of 
two linear time-invariant systems followed by nonlinear 
systems. The linear time-invariant systems lead to single input 
single output models (SISO), where the anaesthetic drug 
concentration U and plasma concentration    are the input and 
output of the    model, and the plasma concentration    and 
effect-compartment concentration     are the input and output 



of the    model. The parallel process models are     and      
together with linearization constant K. 
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Figure 4. IMC in DoA 

The equivalent parallel models for the pharmacokinetics and 

pharmacodynamics are respectively     and     together with 

linearization constant K. K is obtained from equation (4) 

around the reference concentration         and is given by 

Where    
     

     
         

Using the values of                ,           

and     . Also        is the IMC controller block which is 

the inverse of the nominal patient models      ,     and K 

respectively. 

IV. SIMULATION STUDY AND RESULTS 

The nonlinear DoA model is shown in the block diagram in 
Fig. 5. To perform these simulations, Matlab program is 
developed to compute parameters for both linear and nonlinear 
Simulink models. The Matlab programs is developed to 
evaluate the influence of several parameters ( ,    , and    

  
    

  ) on the nonlinear model. The simulations evaluate the 
influence of drugs in steady state on the Hill equation.  

The BIS and the infusion rate in typical cases of automatic 

DoA control are shown in Fig. 6. The controller performance is 

affected due to inter-patient variability, when using a nominal 

model for IMC strategy. Notice that the IMC strategy includes 

an identification of the patient specific parameters, and 

therefore, it takes into account the patient variability to obtain a 

better control performance. 

 
 
 

 

Figure 5. Non linear DoA model built in Simulink 

 

Figure 6. Simulink diagram for IMC system 

During the induction phase, the time-to-target for the IMC 
strategy has rather high performance. The IMC controller 
brings the BIS variable to the reference level. The results in this 
study can be attributed to the fact that the IMC controller is 
more cautious controller, making an exchange between small- 
time-to-target, small undershoot and robustness against patient 
variability as shown in Fig. 7. 

Figure 7. Performance of the IMC 

 

Because plasma propofol concentration measurement is 
unavailable, it is estimated through the nominal PK model. BIS 
is measured online. The controller has maintained BIS between 
40 and 60 during the surgery. Firstly, it is assumed that the 
patient is in a fully awake state (BIS≈100) and then the 
controller is turned on the set-point is changed from 100 to 50.  
This condition brings the patient to the surgical operating range 
(40 ≤ BIS ≤60) which must be maintained for the period of the 
surgery.  The predicted plasma propofol concentration must be 
between 1 μg/mL and 5 μg/mL. The lower bound guarantees a 
lowest amount delivery of anaesthetic, whereas the upper 
bound prevents overdosing of the drug. The manipulated 
variable (propofol infusion rate) u is constrained between 0 and 
40 mg/kg/h. The higher bound is needed because higher 
propofol infusion leads to a more rapid increase of propofol 
concentration in the subject’s body and this may lead to 
hypnotic crisis, cardiac arrhythmia, or even cardiac arrest. The 
lowest amount bound on u reflects the impossibility of 
administering negative concentrations of propofol. 

Because the safe regulation of DoA level is very crucial 
during the surgery, the constraints imposed on the inputs is 
hard constraints, that is, at any time the controller should not 
violate these limits. The modification parameters for the IMC 
controller are the filter time constant λ which is put at 1.7 and 
order   of the filter is set to 2. Here also, the value of K used is 
-17.30. With the PID controller, the settings were      
                  , and             

The response is faster compares with PID controller. A 
small offset persists throughout the simulation time. Fig. 9 
shows the predicted plasma propofol concentration, where it is 
seen that all the controllers result in overshoot (higher with PID 
controller Fig. 8) but are still maintained within the constraints. 

We would like to verify if the two controllers are able to 
meet performance specifications with reasonable variation in 
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the model parameters (inter- and intra-patient variability). The 
details are shown in table I. 

TABLE I.  VALUES OF THE PARAMETERS FOR THE 15 PATIENT 

 
Parameter 

Patient no.           k10              k12            k21                k13               k31                ke0        EC50          γ 

1                        0.08925    0.084       0.06875      0.031425    0.004125      0.459      1.6             2 

2                        0.14875    0.14         0.04125      0.052375    0.004125      0.239      1.6             2  

3                        0.14875    0.112       0.04125      0.0419        0.004125      0.239      1.6        3.122 

4                        0.14875    0.14         0.04125      0.052375    0.004125      0.239      1.6        3.122 

5                        0.08925    0.084       0.04125      0.052375    0.002475      0.459      2.65      2.561 

6                        08925       0.084       0.06875      0.031425    0.002475      0.349      2.65      2.561 

7                        0.14875    0.112       0.06875      0.031425    0.002475      0.459      2.65      2.561 

8                        0.119        0.112       0.055          0.0419        0.0033          0.349       2.65     2.561 

9                      0.119      0.112      0.055       0.0419      0.0033       0.239      2.65                2  

10                      0.119        0.112       0.055          0.0419        0.0033          0.239       2.65      2.561 

11                      0.08925    0.084       0.06875      0.031425    0.002475      0.459       3.7           2  

12                      0.14875    0.112       0.06875      0.031425    0.002475      0.349       3.7        2.561 

13                      0.08925    0.084       0.06875      0.031425    0.002475      0.239       3.7        2.561 

14                      0.08925    0.084       0.06875      0.031425    0.002475      0.239       3.7        3.122 

15                      0.08925    0.084       0.04125      0.052375    0.002475      0.239       3.7        3.122 

 

At this point, we assume that variability is in both the PK 
and PD (based on patient’s sensitivity to the drug) model 
parameters. Our control simulations showed that the variability 
in PD parameters have more impact on BIS than the variability 
in PK parameters. First, each PK parameter              
                      is assumed to vary over three levels 
(minimum, average, maximum).Simulations show that changes 
in volumes of the compartments (            ) has very 
small effect on the performance. For the insensitive patient, 
depletion rate constants of the central compartment      
             are high (0.1488, 0.139, and 0.05211, 
respectively) and generating rate constants           are low 
(0.041, and 0.0021, respectively). In the PD parameters, higher 
          indicates the need for further drug to get the same 
DoA level, higher         represents higher nonlinearity and 
lower     (0.2388) indicates sluggishness in response. For the 
sensitive patient                 are low (0.089, 0.084, and 
0.031, respectively) and          are high (0.0691, and 0.0039, 
respectively). In the PD parameters, lower           indicates 
the need of a smaller amount drug to get the same DoA level, 
lower      represents lower nonlinearity, and higher 
           indicates more rapidly response. Also, since     
represents the process gain, higher     (higher gain) represents 
faster response and lower     (lower gain) represents slower 
response of the process. To come to the point, two parameters 
      for IMC, and three parameters             for PID are 
used for modifying the controller. 

 

 

 

 

 

 

 

 

 

Figure 8. PID controller 

 

 

 

 

 

 

 

 

 

 

Figure 9. Performance of PID controller 
 

 

 

 

 
 

 
 

 

 
 

Figure 10. Infusion rate of propofol (IMC) 
 

Figure 11. Infusion rate of propofol (PID) 
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Figure 12. Predictive plasma propofol concentration (IMC) 

 

 

 

 
 

 

 
 

 

 
 

 

Figure 13. IMC system  

 

V. CONCLUSIONS 

In this study, the regulation of anaesthesia using BIS as the 
controlled variable has been investigated. A robust controlled is 
designed to compensate for patient inherent drug response 
variability. The performance of this controller is evaluated and 
compared with the performance of the conventional PID 
controller. The IMC controllers are found to be robust to intra- 
and inter-patient variability, and better at handling disturbances 
and measurement noise.  
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