The impacts of agricultural intensification on arthropod assemblages at global and local scales

Simon John Attwood (BSc Hons)

A thesis submitted for the award of Doctor of Philosophy
University of Southern Queensland
2009
Abstract

Agriculture has often resulted in large-scale habitat loss and simplification of ecosystems and the loss of biological diversity. However, agricultural landscapes can also provide habitat for a wide range of species. Whilst ecological research has tended to focus on natural habitats or native habitat components situated in agricultural systems, there is a growing realisation that production land can play an important role in ecological processes and conservation outcomes. In this thesis I explored a number of questions pertaining to the relationship between agriculture and biodiversity:

1. What drives agricultural change and how have different global patterns of agricultural development impacted upon biological diversity?

2. How do abundance and richness of different arthropod taxa and feeding guilds respond to land-use change globally?

3. How and why do Formicidae populations and assemblages vary among different land uses in a heterogeneous agricultural landscape?

4. Do body-size and morphological features of Araneae, Coleoptera and Formicidae assemblages differ among different land uses in an agricultural landscape?

5. How do arthropod assemblages of crops differ depending on the type of habitat that borders the crop field?

6. Does the rate of pest-predation in cropping vary depending on the adjacent habitat type?

Agricultural land-use change is often driven by an interacting combination of biophysical factors and socio-economic and political factors, and frequently impacts negatively on biodiversity. In this study I identified four broad patterns of how agriculture can impact on biodiversity globally, related to the history of agriculture in a region, and the trajectory of agricultural management intensification.

The impact of agriculture and the utilisation of agricultural land uses by arthropods are of particular importance, given the role that arthropods can play in driving fundamental ecosystem processes and functions upon which healthy
agricultural systems depend. In order to examine global trends in responses of arthropod communities to land-use change, I undertook a series of meta-analyses incorporating data from over 250 studies from the scientific literature. From this I found that arthropod richness declined along a gradient of agricultural intensification from native vegetation to improved pasture, to reduced-input cropping, to intensive cropping. Within feeding guilds, both predators and decomposers exhibited this response, but not herbivores. The decline of arthropod richness was greater between native vegetation and agricultural land than it was between different categories of agricultural land, implying that on average, the retention of native vegetation may be a more effective strategy in maintaining arthropod species richness than wildlife-friendly farming. However, low-intensity agricultural land uses were consistently more biodiverse than their intensive counterparts, indicating that wildlife-friendly farming may also be an effective conservation strategy where retaining native vegetation is not feasible or cost effective, or where native vegetation is already sufficiently protected or managed.

Having identified a range of globally consistent patterns of arthropod assemblage responses to different agricultural land-use and management change scenarios, I examined these in a geographically localised context, in a heterogeneous mixed farming landscape in southern Queensland, Australia. I examined patterns of Formicidae abundance, richness, and assemblage composition in three land-use types (native woodland, grazed pastures and crops) and the interfaces between them. The patterns of richness decline amongst land-use types observed for ants in the field study were broadly similar to those found in the global analyses. However, whilst the native woodland sites were the most biodiverse and the intensively managed cropping was biologically very impoverished, the pasture treatment contributed to landscape-level ant diversity in having a distinctive ant assemblage and several morphospecies restricted to this land-use type. This indicated that not only remnants of woody vegetation, but also elements of the agricultural matrix, should be considered in biodiversity management in agricultural landscapes.

I also examined if assemblages displayed different morphological trait patterns among the land-use types, potentially due to the differing levels of habitat modification and disturbance in the land uses. There were more small-bodied beetles and spiders in intensively managed cropping areas than in pastures and woodlands, and the incidence of highly mobile macropterous beetles was greatest in intensively
managed cropping. This indicates that intensively managed land uses may create suitable conditions for, and confer an advantage on, taxa that have small body size and high degrees of vagility. Such findings could be attributable to a range of factors, such as highly vagile, winged taxa being better able to rapidly colonise crops following disturbance events.

The ecological influence of a land-use type can extend beyond its boundaries. I examined how arthropod assemblages differed in crop fields that were bordered by different habitats, and whether sites at the edge of the field differed in their assemblage to those in the interior. This was tested using pitfall trap stations at crop field edges and crop interiors that differed in whether they were bordered by a patch of native woodland/grassland or a linear grass strip. The richness, abundance and assemblage composition of ants was different at a cropping/woodland edge than it was between the edge formed by cropping and linear strips of vegetation. The ant assemblage in cropping field interiors differed depending upon which habitat type was adjacent to the field. Whilst I found differences in assemblage composition in cropping habitats, depending on whether the adjacent habitat type was native woodland or a linear grass strip, predation rates of *Heliothis armigera* (Lepidoptera: Noctuidae) eggs placed in crops bordered by different habitats did not differ. However, the distance from the edge (regardless of adjacent habitat type) did appear to influence predation rates, with removal of eggs being greater at the edges of crops than in the cropping field itself. This higher rate of egg predation appears to indicate that predator densities may be higher at edge habitats than in crops, and therefore edges may be important sources of predatory arthropods.

This study has contributed to an understanding of how arthropod assemblages are shaped by different agricultural land uses and habitat types in a part of the world where European-style agriculture is a relatively recent introduction (‘frontier’ regions). From this study I conclude that agricultural landscapes in frontier regions have considerable potential to support a range of arthropod groups, providing that they contain remnants of native vegetation, and some relatively low intensity land uses such as pastures. The distinct ant assemblages and treatment-specific taxa found in the pasture systems indicate that mixed-land use farming is likely to have greater biodiversity value than monocultural practices and hence should be encouraged at the policy and on-ground management levels. Furthermore, it appears that relatively low intensity habitat types such as the edges and boundaries of crops and other land-use
types may contribute to maintaining arthropod biodiversity and localised pest control potential. Finally, this study indicates that more attention given to examining the biodiversity attributes of agricultural land uses in frontier regions (where the focus of biodiversity research and conservation is often centred on remnants of native habitat rather than components of the agricultural matrix) may provide important insights into the roles that different farm environments can play in conserving biodiversity and maintaining ecosystem function.
Certification of Dissertation

I certify that the ideas, experimental work, results, analyses and conclusions reported in this thesis are entirely my own effort, except where otherwise acknowledged. I also certify that the work is original, and has not been previously submitted for any other award, except where otherwise acknowledged.

__
Signature of candidate
Date

Endorsement:

__
Signature of supervisor
Date

__
Signature of supervisor
Date

__
Signature of supervisor
Date
Acknowledgments

An awful lot of people, organisations and entities have, in some way, accompanied me on the PhD journey, contributed in some small or considerable way, or have generally mopped my fevered brow whilst I traversed the cognitive wilderness.

Thanks go to them all.

My valiant and learned supervisors, Martine Maron, Alan House and Charlie Zammit for sparking ideas, answering my questions (both reasonable and ridiculous) patiently, allowing me to explore various other paths and for generally dragging me out of cul-de-sacs with sound advice!

My esteemed co-workers at ACSC: Jerry Maroulis and Roger Stone for seemingly infinite enthusiasm, encouragement and support—personal, intellectual and material.

Kate-Reardon Smith for living the parallel PhD existence, and thus being a source of empathy and sage counsel. KRS was also of great help in introducing me to landholders.

All the other ACSC post-grads—Fiona Morris, Stuart Collard, Cameron Graham, Jarrod Kath, Alison Howes, David Grasby, Megan Brady, for their general support.

Other ACSC staff to thank include Geoff Cockfield for fiscally keeping the project aloft, and being a general fountain of knowledge, Andrew Le Brocque and Pam Harris.

Other USQ folk to thank include Peter Dunn, Jeff Patrick and Ashley Plank for statistical illumination, Oliver Kinder for creating the most astounding contraptions, Pat McConnell, Morweena and Vic for providing laboratory kit and Karen for painting directional traps. Thanks to Debbie White for being able to accommodate constant requests for vehicles and such like.

The project simply couldn’t have been done without the financial support of the Charles Hayward Scholarship and, of course, the many landholders who generously allowed me access to their properties, provided information, conversation and tea unreservedly. In particular I would like to thank: Shona and John Rice, Harold Kowitz, Jenny Radke, Paula Halford, Pam Postle, Richard Thallon, Rob McCreath, Frank and Len Mengel, David House, Marilyn Schefe, Paul Fuhlbohm, Wayne Muller, Warren Carrigan, Vicky and Andrew Green, Jason Huggins, Neil Nass and Greg Lipp.

Further afield I would like to thank, Greg Ford for books and landholder contacts, Valerie Debuse for CANOCO advice, Yvonne Buckley for general experimental design chats, John Lawrence for assistance in the field, Ros Schumacher for assistance in the lab, Melina Myles for supplying moth eggs on demand and Alan Andersen and Chris Burwell for ant identification advice, input and verification. Also, Jessica Gurevitch for meta-analytical
advice and Henning Petersen and Mike Furlong for providing additional data relating to their studies.

Thank you to my parents for their financial assistance and continued interest (and perhaps occasional bafflement) in my work. In particular, thanks are due to my father for instilling the ecology bug in me from an early age.

Thanks also to the class of ‘96–‘99 UEA ecology group for their positive vibes and influence over the years and to Dr Ciro Rico, without whom I would never have known about an ecology course in my home town, and would probably have taken a very different path in life!

Much of this PhD has been conducted to a soundtrack of fine music—without this it would have been a far more dispiriting experience. Therefore, thanks to (among others): ABC Classic FM, Epic Rock Radio, BBC Radio 3 & 4, Opeth, Dmitri Shostakovich, Miles Davis, W.A. Mozart, Capercaillie, Radiohead, Massive Attack, Sigur Ros, etc., and above all Olivier Messiaen for reminding me that ecology is almost as much an art as it is a science.

Finally, thanks to my beloved Sarah and Oscar for their love, support and seemingly inexhaustible tolerance. I dedicate this work to you because you deserve it, and I will soon a) lighten up, b) stop working weekends and c) start paying some bills. Love you both.
Table of contents

Abstract.. ii
Certification of Dissertation.. vi
Acknowledgments.. vii
List of Figures .. xii
List of Tables and appendices... xiv
Journal publications.. xvi
Conference presentations... xvi
1.1 Introduction ... 2
1.1.1 Preamble ... 2
1.1.2 The origins and prehistoric dispersal of agriculture ... 2
1.1.3 What drives agricultural land-use change?... 5
1.2 Agriculture and biodiversity... 6
1.2.1 Broad impacts of agricultural land-use change on biodiversity 6
1.2.1.1 Agriculture as a major threat to biodiversity .. 6
1.2.1.2 Agricultural expansion and coincidence with areas of high biodiversity 7
1.2.2 Global agricultural development scenarios and biodiversity impacts 10
1.2.2.1 Traditional & intensive (long history of traditional agriculture with recent intensification) .. 11
1.2.2.2 Traditional & abandoned (long history of traditional agriculture with recent land abandonment) ... 15
1.2.2.3 Frontier & extensive (relatively recent introduction of modern agriculture, with low intensity management or land uses) 17
1.2.2.4 Frontier & intensive (relatively recent introduction of modern agriculture, with highly intensive management or land uses) 18
1.2.3 Agriculture and arthropods .. 20
1.3 Research focus of thesis... 22
1.3.1 Overview of research rationale.. 22
1.3.2 Primary research questions ... 25
1.4 Chapter summaries ... 26
2.1 Introduction ... 30
2.2 Methods ... 32
2.2.1 Arthropod measures ... 32
2.2.2 Land-use comparisons ... 33
2.2.3 Literature search .. 34
2.2.4 Data extraction and analysis ... 35
2.2.5 Data analysis .. 36
2.3 Results .. 38
2.3.1 Arthropod richness... 38
2.3.1.1 Combined taxa richness .. 38
2.3.1.2 Feeding guild richness ... 41
2.3.2 Arthropod abundance ... 42
2.3.2.1 Combined taxa abundance ... 42
2.3.2.2 Feeding guild abundance .. 42
2.3.3 Analytical technique ... 43
2.4 Discussion .. 49
2.4.1 Arthropod richness ... 50
2.4.2 Arthropod abundance ... 52
2.4.3 Practical implications ... 53
3.1 Introduction ... 56
4.4.4 Alternative body-size/land-use intensification responses ... 121
4.5 Conclusion .. 122
5.1 Introduction ... 125
5.2 Methods .. 131
5.2.1 Study area and study sites ... 131
5.2.2 Experimental design and sampling ... 132
5.2.2.1 Arthropod sampling .. 133
5.2.2.2 Heliothis egg predation ... 135
5.2.2.3 Habitat Structure .. 136
5.2.3 Data Analysis .. 137
5.2.3.1 Univariate .. 137
5.2.3.2 Assemblage composition ... 138
5.2.3.4 Influence of environmental variables on ant assemblage composition 138
5.3 Results ... 139
5.3.1 Arthropod richness and abundance ... 139
5.3.1.1 Directional pitfall trapping .. 139
5.3.1.2 Suction sampling .. 144
5.3.1.3 Egg card predation ... 145
5.3.1.4 Ant morphospecies and functional group assemblage composition 145
5.3.1.5 Influence of habitat variables on ant morphospecies assemblage composition 150
5.4 Discussion ... 151
5.4.1 No difference between ingoing and outgoing arthropod assemblages ... 151
5.4.2 The influence of edge type on arthropod assemblage composition ... 152
5.4.2.1 Effect of edge habitat type—composition and structure ... 152
5.4.2.2 Effect of edge habitat type—Habitat extent ... 153
5.4.2.3 Effect of edge habitat type—adjacent habitat disturbance ... 154
5.4.3 The influence of edge and adjacent habitat type on arthropod assemblages in crops 155
5.4.4 Mixed results for other arthropod measures ... 157
5.4.5 Edge habitats and predation rates ... 159
5.5 Conclusions .. 160
6.1 Summary of Thesis .. 163
6.2 Limitations ... 165
6.3 Management and policy implications .. 168
6.4 Further research ... 170
References .. 174
Appendix A.1 .. 201
Appendix B.1 .. 204
Appendix B.2 .. 205
Appendix C.1 .. 222
Appendix C.2 .. 224
Appendix C.3 .. 247
Appendix D.1 .. 249
List of Figures

Figure 1.1a Chronological sequence of agricultural development and environmental impact in the British Isles

Figure 1.1b Chronological sequence of agricultural development and environmental impact in Australia

Figure 2.1 (a-d) Hedges’ E^{++} average effect size for meta-analyses of arthropod abundance and richness responses for various land-use comparisons

Figure 3.1 Arthropod citation frequency 1993–2006
Figure 3.2 Agricultural production profile of the study area
Figure 3.3 Sampling locations in landscape
Figure 3.4 Experimental design and spatial arrangement of pitfall trapping sampling points
Figure 3.5 The Hedges’ E^{++} average effect size for meta-analyses of ant abundance and richness responses for various land-use comparisons
Figure 3.6 Mean count ant morphospecies richness in core land uses and interface habitats
Figure 3.7 Grand mean ant abundance in core land uses and interface habitats
Figure 3.8 Margalef and Shannon (H') diversity indices for core land uses and interface habitats
Figure 3.9 nMDS of 4th rt transformed ant morphospecies assemblage data, stratified by land-use type
Figure 3.10 nMDS of 4th rt transformed ant morphospecies assemblage data, stratified by block/farm
Figure 3.11 (a–l) Distributions of selected morphospecies based upon proportion of total occurrences recorded in each land-use type
Figure 3.12 Average contribution of ant functional groups to overall assemblage composition in native vegetation and agriculture in literature
Figure 3.13 nMDS of 4th rt transformed ant functional group assemblage data, stratified by land-use type
Figure 3.14 nMDS of 4th rt transformed ant functional group assemblage data, stratified by block/farm
Figure 3.15 Mean relative abundance of each functional group in five land-use treatments
Figure 3.16 Relative abundance of each functional group in native vegetation and agriculture from field study
Figure 3.17 Variation explained of ant morphospecies assemblage composition by environmental variables
Figure 3.18 Canonical correspondence analysis of ant morphospecies and environmental variables

Figure 4.1 Mean carapace width of all spiders among land-use types
Figure 4.2 Mean carapace width of adult spiders among land-use types
Figure 4.3 Mean spider abundance in four size classes among land-use types
Figure 4.4 Mean carapace width of Lycosidae spiders among land-use types
Figure 4.5 Mean carapace width of Linyphiidae spiders among land-use types
Figure 4.6–4.9 Mean skewness and Kurtosis for spider carapace size among land-use types
Figure 4.10 Mean beetle body size among land-use types
Figure 4.11 Mean beetle abundance in four size classes among land-use types
Figure 4.12 Mean abundance of macropterous and brachypterous/apterous beetles among land-use types
Figure 4.13–4.14 Mean skewness and Kurtosis for spider body size among land-use types
Figure 4.15 Mean ant body size among land-use types
Figure 4.16 Mean ant abundance in four size classes among land-use types

Figure 5.1 Map of sampling locations
Figure 5.2 Field-scale schematic of sampling points
Figure 5.3 Annual rainfall trends for sampling region (1887-2007)
Figure 5.4 Directional pitfall trap frame design
Figure 5.5 Schematic of habitat structure sampling points
Figure 5.6 Ant richness, abundance and functional group abundance in ingoing and outgoing traps
Figure 5.7 Mean ant richness among edge types and distances
Figure 5.8 Mean ant abundance among edge types and distances
Figure 5.9 Mean order-level richness and abundance among edge types and distances
Figure 5.10 Mean spider abundance among edge types and distances
Figure 5.11 Mean spider abundance in different size classes among edge types and distances
Figure 5.12 Mean proportion of Heliothis eggs taken 1 m and 20 m into crop
Figure 5.13 (a–c) nMDS ordinations of 4th rt transformed ant morphospecies data
Figure 5.14 (a–c) nMDS ordinations of 4th rt transformed ant functional group data
Figure 5.15 Mean abundance of ants by functional group in the four edge and cropping treatments

List of Tables and appendices

Table 1.1 Correlation results for global avian biodiversity and agricultural intensification metrics

Table 2.1 Arthropod and feeding guild richness results for meta-analyses for land-use and cropping management comparisons
Table 2.2 Taxonomic richness results for meta-analyses for land-use and cropping management comparisons
Table 2.3 Combined arthropod and feeding guild abundance results for meta-analyses for land-use and cropping management comparisons.
Table 2.4 Taxonomic abundance results for meta-analyses for land-use and cropping management comparisons

Table 3.1 Environmental habitat variables measured at each sampling point
Table 3.2 Repeated measures ANOVA results for ant richness, abundance, Margalef and Shannon diversity
Table 3.3 Paired t-test results for ant morphospecies richness
Table 3.4 Paired t-test results for ant morphospecies Margalef diversity
Table 3.5 Land-use type comparisons depicting the three morphospecies in each comparison that contributed the highest to between-land-use dissimilarity
Table 3.6 Variation in ant morphospecies assemblage composition explained by each environmental variable

Table 4.1 Body size measurement classifications for ants, beetles and spiders
Table 4.2 Repeated-measures ANOVA results for spider body size among different land uses

Table 4.3 Repeated-measures ANOVA results for beetle body size among different land uses

Table 4.4 Repeated-measures ANOVA results for ant body size among different land uses

Table 5.1 Linear mixed-model results for arthropod directional pitfall trapping among distance from edge and edge and crop types

Table 5.2 Linear mixed-model results for suction sampling

Table 5.3 ANOSIM results for ant morphospecies assemblage composition

Table 5.4 ANOSIM results for ant functional group assemblage composition

Table 5.5 SIMPER results for ant morphospecies treatment dissimilarity percentage contribution comparing woodland treatments and linear grass strip treatments

Table 5.6 SIMPER results for ant morphospecies treatment dissimilarity percentage contribution comparing edge treatments and crop treatments

Appendix A.1 Number of bird species, endemic bird species and IUCN Threatened bird species by country

Appendix B.1 Taxonomic and agricultural land-use search terms for meta-analysis literature search

Appendix B.2 Papers included in meta-analysis

Appendix C.1 Ant morphospecies list and occurrence by land-use type

Appendix C.2 Papers, taxa and data included in ant functional group meta-analysis

Appendix C.3 Bray-Curtis Similarity matrix for ant morphospecies along intensification gradient

Appendix D.1 Bray-Curtis Similarity matrix for ant morphospecies among directional pitfall trap sites
Journal publications

Conference presentations

