Flexible engineering degree programs with remote access laboratories in an Australian university known for its excellence in e-learning

H. Ku, S. Goh, A. Hitock

Abstract

Flexible delivery of education is the starting point for discussion in this article. The e-learning history of the University of Southern Queensland (USQ) was used to contextualize the article. USQOnline was mentioned next. The article then described the Distance and e-Learning Centre (D4C) in USQ. It then focused on the innovative delivery of USQ engineering degree programs, where the course flexibility was then highlighted together with their innovative residential schools and future remote access laboratories at USQ. An example of a remotely accessible laboratory was also mentioned. A large number of international and domestic students enrolled in USQ Bachelor of Engineering programs since their inception by external mode only. Finally, the article discussed distance education and e-learning in USQ and Australia. © 2009 Wiley Periodicals, Inc. Comput Appl Eng Educ 19: 18–25, 2011

INTRODUCTION

Flexible delivery, based primarily on the application of distance education technologies and methodologies, is the key to the future of education and training. It could well be the only viable option to meet the escalating worldwide need for lifelong learning, for as Taylor has pointed out that traditional education systems throughout the world have been stretched to the limit by the population explosion, scarcity of resources and expansion of knowledge. In the future, flexible delivery is likely to play a more significant role at all levels of education and training. Flexible delivery is likely to play a more significant role at all levels of education and training. Because of its tradition and expertise in distance education, Australia is well placed to become a leader in flexible delivery.

In many contexts, including continuing professional education, the clientele for distance education consists mainly of part-time students in full-time employment. Distance educators have, therefore, had to provide teaching-learning resources (printed study guides, audiotapes, videotapes, computer-based courseware, etc.) of high quality that could be used at a time and in a place convenient to each student. In effect, these flexible access technologies allow the student to turn "the teacher" on, or off, at will as lifestyle permits. Similarly, access to the Internet facilitates interactivity, without sacrificing the benefits of flexible access, since it can be used to support asynchronous communication. Such flexibility has a major pedagogical benefit—it allows students to progress at their own pace. This varying rates of individual progression can be accommodated, unlike in typical conventional educationist practices where the whole class tends to progress at the same pace in synchronisation with the delivery of information through mate lectures and tutorials. Some of the characteristics of the various modes of distance education that are relevant to the quality of teaching and learning are summarized in Table 1 below.

Although many universities are just beginning to implement fourth-generation distance education initiatives, the fifth generation is already emerging based on the further exploitation of new technologies. The fifth generation of distance education is essentially a modification of the fourth generation, which aims to capitalize on the features of the Internet and the Web.

The widespread use of the Internet worldwide in the last 11 years has encouraged universities and other educational institutions to provide educational courses using this medium. The University of Southern Queensland (USQ) started to offer a Graduate Certificate Course in Distance Education via the Internet 8 years ago. With the success of this offer, USQ formally launched 23 of its award courses worldwide through the Internet on USQOnline on May 19, 1999. USQOnline is info of the system developed by USQ to offer its courses via the Internet. Students anywhere in the world can now enrol in courses through the Internet. The Faculty of Engineering and Surveying (FOES) of USQ has been delivering four Graduate Certificate Courses via the Internet since semester 2, July 1999. These Graduate Courses are the first of their kind in Australia. USQ was recognized as Australian University of the Year for its excellence in distance learning and the best e-University for the Year 2000–2001 deliver its fame from here 4.7. It is necessary to stress that USQ is not a virtual university; it is a traditional university with over 5,000 on-campus students. However, USQ uses three ways of delivering the courses to its domestic and international communities, namely: on-campus mode, the traditional distance education with study books and other multimedia mode, and through the Internet 8.9. In addition, USQ is well recognized globally as one of the leading flexible provider of tertiary education as evidenced by the recent visit from the Tokyo Development Learning Centre (World Bank) in April 2007. In response to the new accreditation of our programs by the Institution of Engineers, Australia (IEAust), in 2007, the FOES has made modifications to our existing programs to meet the aspirations of our students, demands by employers and professional requirements of the IEAust.
Table 1. Models of Distance Education: A Conceptual Framework

<table>
<thead>
<tr>
<th>Models of distance education and associated delivery technologies</th>
<th>Flexibility Characteristics of delivery technologies</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Time</td>
</tr>
<tr>
<td>First generation—The correspondence model</td>
<td>Yes</td>
</tr>
<tr>
<td>Print</td>
<td>Yes</td>
</tr>
<tr>
<td>Second generation—The multi-media model</td>
<td>Yes</td>
</tr>
<tr>
<td>Print</td>
<td>Yes</td>
</tr>
<tr>
<td>Audio tape</td>
<td>Yes</td>
</tr>
<tr>
<td>Video tape</td>
<td>Yes</td>
</tr>
<tr>
<td>Computer-based learning (e.g., CMU/ICAL)</td>
<td>Yes</td>
</tr>
<tr>
<td>Interactive video (disk and tape)</td>
<td>Yes</td>
</tr>
<tr>
<td>Third generation—The telelearning model</td>
<td>No</td>
</tr>
<tr>
<td>Audio/teleconferencing</td>
<td>No</td>
</tr>
<tr>
<td>Videoconferencing</td>
<td>No</td>
</tr>
<tr>
<td>Audioraphic communication</td>
<td>No</td>
</tr>
<tr>
<td>Broadcast TV/Radio and Audio/teleconferencing</td>
<td>No</td>
</tr>
<tr>
<td>Fourth generation—The flexible learning model</td>
<td>Yes</td>
</tr>
<tr>
<td>Interactive multimedia (IMM)</td>
<td>Yes</td>
</tr>
<tr>
<td>Internet-based access to WWW resources</td>
<td>Yes</td>
</tr>
<tr>
<td>Computer mediated communication</td>
<td>Yes</td>
</tr>
<tr>
<td>Fifth generation—The intelligent flexible learning model</td>
<td>Yes</td>
</tr>
<tr>
<td>Interactive multimedia (IMM) online</td>
<td>Yes</td>
</tr>
<tr>
<td>Internet-based access to WWW resources</td>
<td>Yes</td>
</tr>
<tr>
<td>Computer-mediated communication, using automated response systems</td>
<td>Yes</td>
</tr>
<tr>
<td>Campus portal access to institutional processes and resources</td>
<td>Yes</td>
</tr>
</tbody>
</table>

THE UNIVERSITY OF SOUTHERN QUEENSLAND

The USQ is 1 of the 37 publicly funded universities in Australia. The University's principal focus is on teaching supported by research and scholarship. The main campus of the university is situated in Toowoomba, 130 km west of Brisbane; other campuses are in located in Fraser Coast, and Springfield. Since its inception in 1967, USQ has established a reputation as a leading distance education provider. USQ offers programs ranging from associate degree to degrees at Master and Doctorate level through its five faculties. The five faculties are Arts, Business, Education, Engineering and Surveying, and Sciences. Of the 26,000 students, 5,000 students study on campus of whom 700 are international students representing 42 different nations. The remaining 21,000 students, of 5,000 of which live overseas in 50 countries, study off-campus by distance education 15.

USQ was awarded the Commonwealth of Learning Award for Excellence for Institutional Achievement at the third Pan-Commonwealth Forum on Open Learning. In July 2004 and in 1999, USQ won the inaugural Award for Excellence from the International Council for Distance Education (ICDE), as a world leader in "dual mode" (on-campus and off-campus) education 15.

e-Delivery for USQ Programs

USQOnline is the system developed by USQ to offer its programs via the Internet. More than 40 university-accredited undergraduate and postgraduate degree, certificate and diploma programs, courses for credit and professional development are available for study via USQOnline. Students may choose to study one or more courses or an entire program via USQOnline (depending on availability), thereby tailoring your study to suit your individual needs. USQOnline is accessible 24 h a day, 7 days a week, so therefore students can study in their own time at their own pace, at the office or at home—whenever it is convenient. Campus visits are not necessary.

USQOnline will be supported by the USQOnline Support Centre to provide for the needs of both USQOnline in the short term and USQ more broadly in the longer term. All enquiries for USQOnline will be directed through this Support Centre. To provide advice and support to prospective and enrolled students about USQOnline, a network of Online Marketing Representatives (OMRs) called the "USQ Net" will be established throughout the world. Based on the current market targets for semester 24, July 2005, OMRs will be based on Australia, Singapore, Hong Kong, Malaysia, the United States, Canada, United Kingdom, and Germany.

However, despite the heavy investment made by the USQ, both the Vice-Chancellor and the Deputy Vice-Chancellor have stressed that the Internet delivery of our programs via USQOnline was neither more important, nor less important, than our on-campus delivery or our "traditional" off-campus delivery but was complementary to them 3.6.9.

Distance and e-Learning Centre (DeC), USQ

Having prescribed and written down the teaching materials, the examiner passes the materials to the moderator for moderation. The materials are then passed to the DeC for further processing. As well as being the "production house" for the design, development, production, and distribution of USQ study materials, including the e-learning materials, DeC provides a range of services to specifically meet the needs of academic staff involved in teaching and learning activities across the University. DeC offers a range of activities for USQ staff through its monthly DeC Workshop/Seminar Series and is involved in research into Distance and e-Learning, the use of new technologies, online education and other related fields.

Most courses of study have three items in each learning package: an introductory book: a study book, and a book of selected readings. Many learning packages also include other items such as computer-managed assessment (CMA), audio or video tapes, CD-ROM, books of worked solutions and computer disks. Figure 1 shows the course development process in DeC, USQ 15. The production process starts with Planning and Scheduling. Scheduling begins a year in advance of the actual teaching period. Submission dates are determined by the change cycle (new, major, minor, or no change). Tracking information is available on a campus-wide materials database, which covers learning packages from the planning phase to the dispatch phase.

Figure 1. Course development process in DeC, USQ. [Color figure can be viewed in the online issue, which is available at wileyonlinelibrary.com.]

The Faculty of Engineering and Surveying

The FOES is one of the foundation faculties of the University. At the moment, there are more than 3,000 students studying different types of award programs, of whom 60% are off campus studying through distance education or dual mode. The Faculty's teaching is supported by a solid foundation of research and scholarship, evidenced by a number of research centers, of which the largest is the Centre of Excellence in Engineering Fibre Composites (CEEF). The facilities of the FOES include a newly built AUD 10.8 million Engineering and Surveying Building, advanced finite element and CAD laboratories, robotics and mechatronic laboratories, modern materials research and testing facilities, and signal processing, microprocessor system design, and advanced electronic laboratories 13.54.

Engineering Degree Programs and Practice Courses
There are three types of first engineering degree programs in the FOES, USQ, namely: Bachelor of Engineering (BEng), Bachelor of Engineering Technology (BEngTech) and Associate Degree (AD) in Engineering (USQ, 2000). The BEng is the flagship of the Faculty. It is a 4-year on-campus full-time program but students can study it externally over a period of 10 years or a combination of on-campus and off-campus. The program is offered in the disciplines of Agricultural, Civil, Computer Systems, Electrical and Electronic, Software Engineering, Environmental, Instrumentation and Control, Mechanical and Mechatronic Engineering. The BEngTech is a 3-year on-campus full-time program but students can study it by distance education over a period of 6 years. The AD is a 2-year full-time on-campus program but students can study it externally over a period of 4 years.

Five non-course based residential school sessions, each of 50 h duration, of which 40 h are for practical work and 10 h are for background reading, were developed for each discipline of the Bachelor of Engineering (BEng) program and other engineering degree programs offered by USQ. One of the non-course based residential school sessions is the core unit, Engineering Practice 1, which develops basic engineering skills like instrumentation, measurement, and analysis of data through a series of practical work exercises. This unit must be attended by all students of the Faculty, irrespective of type of degree programs and discipline area 12,11. In 2008, two modes of delivery of residential school sessions are available. The on-campus students will complete each course by performing 4 h of practical work per week over a period of 10 weeks; while the external candidates will need to attend a continuous 40 h of practical work over a period of 1 week for every residential school session.

In order to simplify our discussion, let us use the mechanical engineering discipline as an example. In addition to the core practical course, Engineering Practice 1, there are four more practical courses, Mechanical Practice 1 through Mechanical Practice 4. Table 2 shows how the five practical courses are taken by students from different types of award programs in mechanical engineering discipline. On campus BEng students will be enrolled in Engineering Practice 1 and Mechanical Practice 1 in their first year of their study. Mechanical Practice 2 in the second year and Mechanical Practice 3 and Mechanical Practice 4 in the third. It should be emphasized that the Practice courses do not solely foster the development of practical skills and expose students to engineering components and systems. These courses will also be used to engender students in communication skills, teamwork skills such as negotiation, and time management skills 7.

In the first year, all students in the BEng program will have another two project based residential school sessions, Professional Practice 1 and Professional Practice 11, in Professional Practice 1, students will be presented with research methodology for dealing with their dissertation; in Professional Practice 2, students will be required to present their project work to their peers and members of staff of the Faculty.

Off campus BEng students will need 8 years of part-time study to complete the program and their five non-course specific practical work and two project-based residential school sessions will be arranged that within 8 years of study, they will need only to come to USQ a maximum of four times; the students will have to spend 2 weeks in USQ each time. For those who are able to have some of their non-course based practical work courses done in their workplace or community, the number of their visits to the campus will be accordingly reduced.

Table 2. Practice Courses Taken by Different Programs

<table>
<thead>
<tr>
<th>Courses</th>
<th>Bachelor of engineering</th>
<th>Bachelor of engineering technology</th>
<th>Associate degree</th>
</tr>
</thead>
<tbody>
<tr>
<td>Engineering practice 1</td>
<td>*</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>Mechanical practice 1</td>
<td>*</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>Mechanical practice 2</td>
<td>*</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>Mechanical practice 3</td>
<td>*</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>Mechanical practice 4</td>
<td>*</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>Professional practice 1</td>
<td>*</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>Professional practice 2</td>
<td>*</td>
<td>*</td>
<td>*</td>
</tr>
</tbody>
</table>

BEng Programs by External Study Only

Up to 1997, the BEng students at USQ could not complete their entire degree study by external study mode. They studied the first 6 years of their part-time course externally and were required to come to campus six or more times intermittently to perform their course-based residential school sessions. After that they were required to come to study for 1 year full-time on campus, same as on-campus BEng students. With the implementation of our innovative residential school sessions in 1998, USQ is able to offer BEng programs totally by external study but at the same time satisfy the requirements of the Institution of Engineers, Australia for professional engineering programs 17.

Hitherto, the totally off-campus mode of BEng programs have been offered by USQ for 10 years and accreditation for the programs had been given by Engineers Australia (EA) in 2007. This current accreditation is different from the previous ones in the sense that accreditation will be based on the learning outcomes of students for each attribute considered.

This means that Engineers Australia will not only look at the details of each course taught in the university but EA will investigate to see whether the courses taught in a program will satisfy the learning outcomes for each attribute under consideration 19. The Bachelor of Engineering (Mechanical) was accredited based on the competency standards required as a mechanical engineer 20. In the documents submitted to Engineers Australia for re-accrediting USQ engineering degree programs for another 5 years, USQ will emphasis that off-campus students will need to come to USQ for 100 h of residential school every 2 years.

Since the introduction of Bachelor of Engineering program by off-campus study only, USQ has been attracting students from countries like Singapore, Hong Kong (Special Administrative Region of China), and Malaya. Those students are very eager to study in their program because they do not need to go to classrooms after work; they can study at their own time and at any pace they want. They also know that the degree they obtain will be recognized by the professional institutions of their countries because of the Washington Accord 17. Communications between lectures were made via Internet, telephone, and fax. The study desk platform currently used by USQ is Modulo, which had been proved to be quite efficient because an e-mail will also be sent to students guiding them to the study desk to read announcements or news. By having the above new methods of communications, student-student and student-teacher interaction can never be better than now.

Remote Access Laboratories (RALs)

In order to improve access by our external students to our innovative residential schools and to cut costs on student side, the FOES decided to investigate the possibility of having remote access laboratories for our practical courses and a working party on this matter was set up in 2006. The main objectives of the working party were:

1. To recommend policies that would lead to the establishment of a Faculty remote access laboratory infrastructure.
2. To establish a small number of fully operational remotely accessible laboratory experiments by July 2008. These pilot experiments must be carefully chosen so that they are representative of the full range of experiments that would eventually become remotely accessible.
3. To work with Disciplines to develop RALs to reduce the number of practical courses.

The proposed infrastructure will be used to enable students to conduct experiments or use specific software packages to complete projects. In this document the term experiment is used to describe all those activities. From a hardware point of view the essential components are shown Figure 2. These are:

- The client side (student) computers.
- A secure Internet connection.

![Figure 2. Essential requirements for remote laboratories.](http://onlinelibrary.wiley.com/doi/10.1002/cae.20284/full)
Flexible engineering degree programs with remote access laboratories in an Australian...

Remote Experiment Server(s).
Laboratory Host Computers (may be virtual with USB to IP hubs).
Control and Data Acquisition Systems (Labview Based, SCADA/PLC based, linear/rotary actuators).
Experiment Specific Laboratory Hardware.

The main purpose of a remote experiment server is to allow communication between a legitimate user’s computer on the client side and an available remote laboratory host that has been set-up to run the experiment requested by the user.

Applications that are used to perform experiments (generic term for laboratory work, laboratory experiment, or laboratory exercise using software only) are run on laboratory host computers. Typically these will be connected to experiment specific laboratory hardware via a control and data acquisition interface.

From a software point of view the essential components are:
- Remote Control Software.
- Remote Laboratory Management Software.
- Housekeeping Software.
- Experiment specific software.

Remote Control Software.

In simple terms the remote control software allows the user to assume control over the laboratory host computer. In other words operation of the client (student) side keyboard and mouse has the same effect as using the mouse and keyboard of the laboratory host computer. Also the remote control software displays, in a window on the client’s side, the desktop of the laboratory host computer. Commercially available remote control software includes Microsoft’s Windows Remote Desktop, VNC, Polynear, and Sun Microsystems’ Sun Secure Global Desktop (SGD).

Remote Laboratory Management Software.

It is essential to manage access to remote experiments. The remote access software normally authenticates the client, which means that authentication does not have to be an essential function of the remote laboratory manager software.

The Housekeeper Software.

The Housekeeper Software (Housekeeper) is necessary for resetting the host computer and experiment specific laboratory hardware to their original states after the end of a remote laboratory session. The Housekeeper should automatically execute every time a session is ended voluntarily by the client or forcefully by the remote laboratory manager. The Housekeeper has two parts. The part that is executed at the start of the experiment resets the laboratory specific hardware to its original state. For example, a motor may have to be in the ‘off’ state. That part should be custom written for each remote experiment. The other part is called the remote laboratory computer (including its desktop) back to its original state.

Experiment Specific Software.

The experiment specific software is the application or applications that the client runs on the laboratory host computer during a booked session, in some cases the software being run will be optional to the client. For example, the whole intention of the remote laboratory work may be to use specialist software such as Finite Element software or GIS software. More typically however, the experiment specific software being used will be completely or almost completely transparent to the user.

From the point of view of infrastructure requirements there are at least three types of remote experiments. These are:

- Experiments that do not involve experiment specific laboratory hardware: For example, laboratory work involving solely the use of software programs (Finite Element, GIS).
- Experiments that involve experiment specific laboratory hardware accessed through a control and data acquisition system.
- Experiments where control and data acquisition are part of the experiment specific hardware, for example, laboratory work whose objectives are pure microcomputer or programmable logic controller (PLC) programming.

Example—Remotely Accessible Laboratories (RAL)

In order to make users know more about USQ RAL, an example is mentioned in details. Figure 3a shows a transformer protection training system that is remotely accessible. Hardware based remote laboratory work invaluable requires an interface layer between the hardware that is being tested or experimented on and the laboratory computer. This interface layer is needed for control and data acquisition.

![SCADA controlled network fault simulator. The (a) hardware (b) software control.](http://onlinelibrary.wiley.com/doi/10.1002/cae.20284/full)

Figure 3. SCADA controlled network fault simulator.

Supervisory Control and Data Acquisition (SCADA) systems are widely used in industries. The software part of the SCADA system allows a screen-based Human Machine Interface (HMI) to be constructed which enables an operator to send control commands to plant being controlled through the PLC. It also allows selected data from the plant to be acquired through the PLC and displayed in an easily understood form on the HMI. The HMI for the transformer protection system is shown in Figure 3b, which is a screenshot of what appears on the remote operator’s desktop. It is essentially a mimic diagram of the plant to be controlled by the student. In this case, the plant is the transformer that can be energized and connected to a load by means of circuit breakers represented by squares on the diagram. The remote user can, through the HMI and PLC, close or open the circuit breakers and can initiate short circuit faults within or outside the transformer. The rectangle representing the circuit breaker turns red when ON and green when OFF. Students doing laboratory work are given the task of remoting programming a relay, which is shown at the top left hand side of Figure 3a. The relay monitors currents and opens the transformer circuit breakers. If, based on user-defined logic, it detects a short circuit fault within the transformer. The relay provides another means of data acquisition. Although this is not shown in Figure 2, students can open the relay’s HMI and view remotely real-time system data that is being continuously captured by the relay. In cases where the relay trips due to a fault, they can view current waveforms and other data for construction of the sequence of events just prior to fault. Students may also be given the option of operating the system remotely for data acquisition. The top left hand side of Figure 3a illustrates a webcam which allows the remote operator view images of an alphanumeric display and a number of indicator light emitting diodes on the relay front panel.

It can be argued that the worlds of Gotovski at al., in computer aided learning in computer architecture laboratory, Reynard el al. in flexible manufacturing cell SCADA system, and Atlas and Aydiner in a real-time computer-controlled simulator are potential candidates for RALs of USQ 22–24.

DISCUSSION

The demand for distance education is accelerating across Australia, with some universities reporting a 50% increase of course enrolments during the past 2 years. Higher education leaders attribute this increase partly to more courses becoming available online and the availability of FEE-HHELP loans from the Commonwealth Government of Australia. There has been an increase in demand for distance education in a broader sense that has come about by the electronic bomb. People can go online to do their courses, have computer discs sent to them, and universities are making more courses available online. Student population in the metropolitan can now also take distance education courses when lecture and tutorial times do not fit their pattern, making it easy and accommodating for them to advance their education.

Gone are the days when distance education was primarily done by people living in remote and regional areas. These days more and more people in metropolitan areas are turning to it. Most people doing our distance education courses are working, many have families and want to be able to study off-campus and in their own time to enhance their career. The market for postgraduate courses is very strong, and distance education gives students the ability to study in their own time and place. We are also seeing students choosing a mix of internal and external study because of the flexibility that online distance education now provides 25.

Online technology has enabled universities to deliver existing material in different ways, but the interesting thing is that online interaction has allowed for a greater engagement of students. Best practices in education now emphasize less about delivery of course material, and more about how students interact with other students, staff and their learning activities in ways that enrich their learning experiences. With more programs available online, many universities have had to restructure their courses. Some are offering wholly
online courses, others, a mix of online education and on-campus workshops. Online tools have become more comprehensive, with online learning management systems allowing students control of when and where they learn. Online tools include peer mentoring programs, chat, and electronic messaging (e.g., MSN), allowing for regular communication with students from anywhere in the world 26.

Infrastructure and funding are among the important ones, but skepticism about the pedagogic value of e-learning and staff development are probably the most challenging. The limitations of e-learning are present, but these may not account for some of the resistance by academics. However, it can also be explained by a lack of time or motivation to carry out what is basically an additional task, since e-learning mostly complements rather than replaces classroom-based teaching, coupled with insufficient literacy either in information and communications technology in general or in e-learning applications. Yet e-learning nonethess has brought benefits. Even if Internet and Communication Technology (ICT) has not revolutionized the classroom yet, it is changing the learning experience of students by relaxing time and space constraints, as well as providing easier access to information (online journals and e-books, student portals, e.g.), an achievement that should not be downplayed 26.

It can be argued that the implementation of RAIs for our practical courses will eliminate the costs and time in attending the current residential schools by students and will encourage more students to view our degree programs more favorably.

CONCLUSION

Flexibility in course delivery is a major beneficiary from the development of online courses. However, in some courses such as engineering, it may be beneficial to have some face-to-face interaction during time of studies. Therefore, though online courses or e-learning are seen as the major driver of tertiary education in Australia currently, it may not be as beneficial if operated totally over the Internet, but to package it with other delivery modes to create the flexibility in the course. One of these courses that are in this flexible category is in the Bachelor of Engineering within USQ.

The offer of the total external mode of Bachelor of Engineering in USQ is made possible by the implementation of the Innovative Residential School in which practical courses were made independent of academic courses 7. These courses teach students the skills to carry out experiments to solve engineering problems and to write reports at professional engineering level as well as techniques for teamwork and interaction with peers. In the first few years of the offer, students from South East Asian countries are uncertain whether their degree can eventually be recognized by the professional institutions in their home country but this is now clear that the degree will be recognized because the Institute of Engineers, Malaysia and the Institution of Engineers, Singapore are applying for the signatory members of the Washington Accord and they have to recognize a qualification that has been validated by professional institutions of signatory countries, which mean students from Europe and North America can also benefit from USQ Bachelor of Engineering programs, particularly when all of the practical courses can be accessed through RAIs. Other RAIs currently available can be found in an article written by USQ academics 21.

REFERENCES

5. The Chronicle, 1 September, 2000, pp 1, 2 and 8.
12. USQOnline, USQNet Business Plan, April–December, the University of Southern Queensland, 1999, pp 1–10.
19. Engineers Australia, Draft Stage 1 Competency Standards for BEng (Mechanical), 2004.

2/11/2011
Biographical Information

Dr. Ku got his Associateship of Polytechnic from Hong Kong Polytechnic, his Master of Science in Engineering from the University of Hong Kong and his PhD from Swinburne University of Technology, Australia. Harry is the senior lecturer in manufacturing engineering in the Faculty of Engineering and Surveying, University of Southern Queensland. He is responsible for teaching manufacturing engineering courses, for example, production engineering. His research interests are in manufacturing and materials science as well as engineering education. Harry has served technical education in Hong Kong and higher education in Australia for more than 20 years. He has published more than 40 refereed journal articles in the areas of his research interests in the last 5 years.

Biographical Information

Mr. Goh completed his BEing in manufacturing & materials at UQ, MBA (Tech Mgt) at Deakin Uni, MPA at USQ, and a Diploma in Company Directorship from AICD. He joined USQ as an academic staff in 2006 after spending 10 years in industry in various roles including R&D Manager, Business Development Engineer to Managing Director of his own firm, and is currently active in a number of boards. His research interests are in manufacturing & materials, engineering leadership, and technology transfer.

Biographical Information

Dr. Antonio Ahflock holds Bachelor of Engineering and PhD degrees from Monash University, Melbourne, Australia. Since 1995 he has been teaching electrical engineering at the University of Southern Queensland. He has about 30 conference and journal publications in the areas of power engineering and engineering education. He has a strong interest in the use of computer technologies as teaching and learning tools. He is the project leader for the establishment of remotely accessible laboratories at the University of Southern Queensland.
Engineering education on supply-chain management for students and employees in Industry (pages 61-89)
Eibabih Ilie-Dodor, Marco Massol, Lucio Monostori, Stefano Scotti and Zoe
Article first published online: 20 FEB 2009 | DOI: 10.1002/cae.20292
Abstract
Full Article (HTML)
PDF (1187K)
References
Request Permissions

Comparison of the most popular object-oriented software languages and criteria for introductory programming courses with analytic network parity study (pages 89-96)
Ziaul Aink and Omar Faruk Baykoğlu
Article first published online: 23 FEB 2009 | DOI: 10.1002/cae.20294
Abstract
Full Article (HTML)
PDF (461K)
References
Request Permissions

ENGTHA: An educational tool for earthquake nonlinear and general live dynamics (pages 97-106)
Richard P. Clarke
Article first published online: 26 MAR 2009 | DOI: 10.1002/cae.20295
Abstract
Full Article (HTML)
PDF (460K)
References
Request Permissions

Electric field effects of bundle and stranded conductors in overhead pov (pages 107-114)
Jordi-Roger Ribas Ruiz, Antonio Garazo Espinosa and Xavier Adaba Núñez
Article first published online: 23 FEB 2009 | DOI: 10.1002/cae.20296
Abstract
Full Article (HTML)
PDF (371K)
References
Request Permissions

Development of Instructional courseware in thermodynamics education (pages 115-124)
Yutisen Liu
Article first published online: 22 MAY 2009 | DOI: 10.1002/cae.20297
Abstract
Full Article (HTML)
PDF (1168K)
References
Request Permissions

A novel web-based laboratory for DC motor experiments (pages 125-131)
Ihsan Celak, Dervi Domirban, Gerd Sorginj and Erdal Imeren
Article first published online: 2 MAR 2009 | DOI: 10.1002/cae.20298
Abstract
Full Article (HTML)
PDF (1283K)
References
Request Permissions

Remote monitoring and control of horticultural cool storage over the Internet (pages 136-145)
M. Cenől, S. M. Sabahi and R. Almandran
Article first published online: 23 FEB 2009 | DOI: 10.1002/cae.20299
Abstract
Full Article (HTML)
PDF (660K)
References
Request Permissions

Strategic learning of simulation and functional analysis in the design re-assembly of mechanisms with CAD on a professional Master’s degree (pages 146-160)
Basilio Ramos Barroso and Rafael Garcia García
Article first published online: 25 FEB 2009 | DOI: 10.1002/cae.20300
Abstract
Full Article (HTML)
PDF (129K)
References
Request Permissions

A Matlab GUI for calculating the solar radiation and shading of surfaces earth (pages 161-175)
Bastian Keller and Alexandre M. S. Costa
An advanced-automated system for equipotential field lines mapping utilizing motion control (pages 171–182)
Alex Seo and Ang Jin Leong
Article first published online: 5 Mar 2009 | DOI: 10.1002/cae.20302
Abstract
Full Article (HTML)
PDF (1985K)
References
Request Permissions

Research regarding the implementation of an interactive application for educational improvement of engineering drawing (pages 183–192)
Pablo Pando Correa, Pedro Alvarez Peñín, Maximo Perez Morales and Alberto Higuera Garrido
Article first published online: 10 Feb 2009 | DOI: 10.1002/cae.20303
Abstract
Full Article (HTML)
PDF (1603K)
References
Request Permissions

A new developed educational approach to improve conventional teaching methodology of the power electronics laboratory (pages 193–200)
H. Y. Yamini, I. A. Alattawi, A. F. Al-Ajouli and A. S. Al-Fahoum
Article first published online: 3 Mar 2009 | DOI: 10.1002/cae.20304
Abstract
Full Article (HTML)
PDF (202K)
References
Request Permissions

The advantages of using Mind Map for learning web DynaPro (pages 201–207)
Ana Daniela Cristea, Adela Diana Borah, Mihaela Gociu and Daniel Cristea
Article first published online: 19 Feb 2009 | DOI: 10.1002/cae.20285
Abstract
Full Article (HTML)
PDF (483K)
References
Request Permissions
12-Jun-2008

Dear Dr. Ku,

Your manuscript entitled "Flexible Engineering Degree Programs with Remote Access Laboratories in an Australian regional University known for its Excellence in e-Learning" has been successfully submitted online and is presently being given full consideration for publication in Computer Applications in Engineering Education.

Your manuscript number is CAE-08-059. Please mention this number in all future correspondence regarding this submission.

You can view the status of your manuscript at any time by checking your Author Center after logging into http://mc.manuscriptcentral.com/cae. If you have difficulty using this site, please click the 'Get Help Now' link at the top right corner of the site.

Thank you for submitting your manuscript to Computer Applications in Engineering Education.

Sincerely,
Computer Applications in Engineering Education Editorial Office
09/17/2008

Dear Dr. Ku,

Manuscript ID CAE-08-059 entitled "Flexible Engineering Degree Programs with Remote Access Laboratories in an Australian regional University known for its Excellence in e-Learning" which you submitted to Computer Applications in Engineering Education, has been reviewed. The comments of the referee(s) are included at the bottom of this letter.

The referee(s) have recommended publication, but also suggest some minor revisions to your manuscript. Therefore, I invite you to respond to the referee(s)' comments and revise your manuscript.

You can upload your revised manuscript and submit it through your Author Center. Log into http://mc.manuscriptcentral.com/cae and enter your Author Center, where you will find your manuscript title listed under "Manuscripts with Decisions".

When submitting your revised manuscript, you will be able to respond to the comments made by the referee(s) in the space provided. You can use this space to document any changes you make to the original manuscript.

IMPORTANT: We have your original files. When submitting (uploading) your revised manuscript, please delete the file(s) that you wish to replace and then upload the revised file(s).

Once again, thank you for submitting your manuscript to Computer Applications in Engineering Education. I look forward to receiving your revision.

Sincerely,

Dr. Magdy Iskander
Editor-in-Chief, Computer Applications in Engineering Education Hawaii Center for Advanced Communications University of Hawaii iskander@spectra.eng.hawaii.edu

Referee(s)' Comments to Author:

Reviewing:

Comments to the Author
This paper describes the flexible delivery of engineering degree programs with remote access at the University of Southern Queensland in Australia. The flexible delivery of engineering courses is a challenging task for both academic staff and students. The paper is generally well written. However, the authors should focus on the computer applications in the flexible delivery of engineering courses rather than on the introduction to USQ. I recommend the paper be accepted for publication if the suggested revisions are made.

The author should also consider including in the reference section related papers which have been published in CAE. By accessing the CAE website, it is possible to identify and reference thee papers and this helps build research community in this subject area.
21-Sep-2008

Dear Dr. Ku,

Your manuscript entitled "Flexible Engineering Degree Programs with Remote Access Laboratories in an Australian regional University known for its Excellence in e-Learning" has been successfully submitted online and is presently being given full consideration for publication in Computer Applications in Engineering Education.

Your manuscript number is CAE-08-059.R1. Please mention this number in all future correspondence regarding this submission.

You can view the status of your manuscript at any time by checking your Author Center after logging into http://mc.manuscriptcentral.com/cae. If you have difficulty using this site, please click the 'Get Help Now' link at the top right corner of the site.

Thank you for submitting your manuscript to Computer Applications in Engineering Education.

Sincerely,

Computer Applications in Engineering Education Editorial Office
09/21/2008

Dear Dr. Ku,

It is a pleasure to accept your manuscript entitled "Flexible Engineering Degree Programs with Remote Access Laboratories in an Australian regional University known for its Excellence in e-Learning" in its current form for publication in Computer Applications in Engineering Education.

A signed copyright transfer agreement is needed for publication. If you have not already provided one you should do so immediately. You can access the copyright transfer agreement at http://www3.interscience.wiley.com/homepages/central/cta/USscta.pdf

Please print the form, complete both sides and forward to the Production Department at the address found on the journal's Wiley InterScience Web page.

You will receive your typeset proofs in due course.

Thank you for your contribution.

Sincerely,

Prof. Magdy F. Iskander
Director, Hawaii Center for Advanced Communications College of Engineering University of Hawaii at Manoa 2540 Dole Street, Holmes Hall 483 Honolulu, HI 96822
808-956-3434
iskander@spectra.eng.hawaii.edu