Competitive removal of water-borne copper, zinc and cadmium by a CaCO3-dominated red mud

Ma, Yingqun and Lin, Chuxia and Jiang, Yuehua and Lu, Wenzhou and Si, Chunhua and Liu, Yong (2009) Competitive removal of water-borne copper, zinc and cadmium by a CaCO3-dominated red mud. Journal of Hazardous Materials, 172 (2-3). pp. 1288-1296. ISSN 0304-3894


Batch experiments were conducted to investigate the competitive removal of water-borne Cu, Zn and Cd by a CaCO3-dominated red mud. The results show that the water-borne Cu had a higher affinity to the red mud, as compared to the water-borne Zn and Cd. The major mechanism responsible for the preferential retention of Cu by red mud was the formation of atacamite. It is likely that, initially, atacamite was formed mainly through the reaction between CuCl2 and NaOH. Reaction between CuCl2 and CaCO3 to form atacamite became more and more important with the gradual consumption of NaOH. Sequential extraction results show that the water-borne metals were preferentially associated with the NH2OH·HCl-extractable fractions at the early stage of the experiment. With increase in the saturation degree of binding sites on red mud particles by the metals, the proportion of HCH3COO-extractable Cu fraction increased accordingly. Water-borne Zn and Cd were also increasingly bound in the HCH3COO-extractable forms until the metal binding capacity of the red mud was nearly depleted. After the binding sites of red mud particles were saturated, part of the Zn and Cd previously retained by the red mud was displaced by water-borne Cu, resulting in the release of the previously immobilized Zn and Cd to the solution. © 2009 Elsevier B.V. All rights reserved.

Statistics for USQ ePrint 8718
Statistics for this ePrint Item
Item Type: Article (Commonwealth Reporting Category C)
Refereed: Yes
Item Status: Live Archive
Additional Information: Author version not held. Published version cannot be displayed.
Faculty / Department / School: Current - USQ Other
Date Deposited: 16 Sep 2010 07:00
Last Modified: 16 Oct 2014 22:55
Uncontrolled Keywords: calcite; heavy metal; metal immobilization; red mud; wastewater treatment
Fields of Research : 09 Engineering > 0904 Chemical Engineering > 090410 Water Treatment Processes
03 Chemical Sciences > 0399 Other Chemical Sciences > 039901 Environmental Chemistry (incl. Atmospheric Chemistry)
05 Environmental Sciences > 0502 Environmental Science and Management > 050207 Environmental Rehabilitation (excl. Bioremediation)
Socio-Economic Objective: D Environment > 96 Environment > 9611 Physical and Chemical Conditions of Water > 961199 Physical and Chemical Conditions of Water not elsewhere classified
Identification Number or DOI: 10.1016/j.jhazmat.2009.07.135

Actions (login required)

View Item Archive Repository Staff Only