Harry Ku

From: MFMS 2009 [mfms2009@yahoo.cn]
Sent: Tuesday, 3 March 2009 4:05 PM
To: Harry Ku
Subject: RE: MFMS 2009 International Conference, Qingdao, China

Dear Dr./Prof. Ku,

Thank you very much for your attention and support to MFMS 2009. Your abstract is received and will be reviewed very soon. We will inform you once the abstract is accepted. We are looking forward to seeing you in Qingdao!

With best regards
Secretary Office, MFMS 2009
Qingdao, China

--- 09年3月3日, 周二, Harry Ku <ku@usq.edu.au> 写道:

发件人: Harry Ku <ku@usq.edu.au>
主题: RE: MFMS 2009 International Conference, Qingdao, China
收件人: mfms2009@yahoo.cn
抄送: "Wei Xiang" <xiangwei@usq.edu.au>
日期: 2009,33,周二,12:45 下午

Dear Prof Yin,

Here is my another abstract - Mathematical modeling of fracture toughness of phenol formaldehyde composites.

Thank you for your kind consideration.

Regards.

Harry Ku

--- 09年2月27日, 周五, Harry Ku <ku@usq.edu.au> 写道:

From: MFMS 2009 [mailto:mfms2009@yahoo.cn]
Sent: Monday, 2 March 2009 9:40 PM
To: Harry Ku
Subject: RE: MFMS 2009 International Conference, Qingdao, China

Dear Prof. Harry Ku,

Thank you very much for your attention and support to MFMS 2009 again. We are looking forward to having your another abstract and meeting you in Qingdao!

Best Regards
Sincerely yours,
Secretary Office, MFMS 2009
Qingdao, China

4/03/2009
Harry Ku

From: MFMS 2009 [mfms2009@yahoo.cn]
Sent: Friday, 20 March 2009 7:51 PM
To: Harry Ku
Subject: Abstract Acceptance
Attachments: Useful Documents.rar

Dear Prof. /Dr. Harry Ku,

We are glad to inform you that the Abstract you submitted titled “Mathematical modeling of fracture toughness of phenol formaldehyde composites” to the 2nd International Conference on Multi-functional Materials and Structures (Paper ID: MF-282) has been accepted. Please kindly submit your full paper (Limited to 4 pages), two professors’ comments on your paper and the Copyright Transfer Agreement to this Email: Mfms2009@yahoo.cn

The useful documents are attached, please check.

The submission guideline is listed in the following link:
http://www.ouc.edu.cn/mfms2009

We will inform you as soon as possible if the full paper is accepted, by fax or email. Thank you very much.

If there is any question, please don’t hesitate to contact me.

Yours sincerely,

Xueting Chang

MFMS 2009 Conference Secretary
Institute of Materials Science and Engineering
Ocean University of China
Qingdao, PRC

Tel: +86 (532) 66786385
Fax: +86 (532) 66786385
Email: mfms2009@yahoo.cn
Website: http://www.ouc.edu.cn/mfms2009

好玩贺卡等你发, 邮箱贺卡全新上线！

23/03/2009
From: MFMS 2009 [mfms2009@yahoo.cn]
Sent: Friday, 26 June 2009 10:59 AM
To: Harry Ku
Cc: bxiangwei@usq.edu.au; ton_waw1210@hotmail.com
Subject: Acceptance for full paper from MFMS 2009 Conference

26 June 2009

Dear Prof. /Dr. H. Ku,

We are pleased to inform you that the paper entitled Mathematical modeling of the fracture toughness of phenol formaldehyde composites reinforced with ESpheres to the 2nd International Conference on Multi-functional Materials and Structures (Paper ID: MF-282) has been accepted. Your paper will appear in our conference proceedings of Advanced Materials Research.

If you haven’t submitted your copyright transfer agreement, please return your copyright transfer agreement to us by email (mfms2009@yahoo.cn) or fax (+86 (532) 66786385) on or before 27 June.

Detailed information on this conference can be found in our official website:
http://www.ouc.edu.cn/mfms2009

If you require any further information, please contact our conference secretary, Ms Li Lan, at mfms2009@yahoo.cn

I am looking forward to seeing you in Qingdao this October.

Best Regards

The 2nd International Conference on Multi-functional Materials and Structures
(MFMS), Oct. 9-12, 2009
Ocean University of China, Qingdao, PRC
Tel: +86 (532) 66786385 Fax: +86 (532) 66786385 Email: mfms2009@yahoo.cn
Website: http://www.ouc.edu.cn/mfms2009

好玩贺卡等你发，邮箱贺卡全新上线！

26/06/2009
Referee's Report Form

Conference: the 2nd International Conference on Multifunctional Materials and Structures

Paper Title: Mathematical modeling of the fracture toughness of phenol formaldehyde composites reinforced with E-spheres

Author(s): H. Ku, W Xiang, N Pattarachaiyakoop

A. Style and Organization:
1. Is the paper clearly presented and well organized? Yes
2. Is the English satisfactory? Yes
3. Is the title appropriate? Yes
4. Are the figures, tables, and their captions clear? Yes
5. Are the references to related work adequate? Yes

B. Scientific Quality (Please check appropriate box):
☐ Contains significant contributions to the advancement of the subject.
☒ Sound, original, and of interest.
☐ Does not add to knowledge of the subject.
☐ Contains fundamental errors.

C. Recommendation (Please check appropriate box):
☐ Publish as is.
☒ Publish with minor revision noted in evaluation statement.
☐ Publish with major revision.
☐ Reject.

D. Comments: Please summarize the reasons for your recommendation in a statement below or on the reverse side of this sheet.

1. The reviewer suggests that such sentences “It is time consuming to prepare the samples for the tests. In addition, it is even more time consuming to carry out the tests and analyze the results.” should be removed from the abstract. Scientific work should not be justified by time consuming but by the merit of the work itself. Sentences modified.
2. 7 should be removed from “7. Conclusion” Done
3. There is no figure 5 “depicted in Figure 5.” Should be Figure 3.

Referee: Wenyi Yan Signature: Date: 22.04.2009
Referee affiliation: Department of Mechanical and Aerospace Engineering, Monash University, Australia
Referee email: Wenyi.yan@eng.monash.edu.au
Referee's Report Form

Conference: 2nd International Conference on Multi-functional Materials and Structures

Paper Title: Mathematical modeling of the fracture toughness of phenol formaldehyde composites reinforced with E-spheres

Author(s): H. Ku, W. Xiang and N. Pattarachaiyaporn

A. Style and Organization:
 1. Is the paper clearly presented and well organized? Yes
 2. Is the English satisfactory? Yes
 3. Is the title appropriate? Yes
 4. Are the figures, tables, and their captions clear? Yes
 5. Are the references to related work adequate? Yes

B. Scientific Quality (Please check appropriate box):
 □ Contains significant contributions to the advancement of the subject.
 ❑ Sound, original, and of interest.
 □ Does not add to knowledge of the subject.
 □ Contains fundamental errors.

C. Recommendation (Please check appropriate box):
 ❑ Publish as it is.
 □ Publish with minor revision noted in evaluation statement.
 □ Publish with major revision.
 □ Reject.

D. Comments: Please summarize the reasons for your recommendation in a statement below or on the reverse side of this sheet.

This paper proposes a new mathematical modeling method to model the fracture toughness of SLG filled phenolic composites. The new method is based upon polynomial interpolation using Lagrange's method. It is simple but effective. The modeling results seem well with experimental results. I'd recommend the publication of the paper as it is.

Referee: Yalong Wang
Signature: Wang Yafeng
Date: 11/05/2009
Referee affiliation: Beijing University of Posts and Telecommunications
Referee email: wangyf@bupt.edu.cn
Multi-Functional Materials and Structures II

Advanced Materials Research Volumes 79-82

Papers

Abstracts
doi:10.4028/www.scientific.net/AMR.79-82

567 papers on 36 pages: 1 2 [3] ...[38] [next]

Study on Vibration Band Gap Characteristics of Phononic Crystal Consisted of Ti and Rubber
Authors: Yan Lin Wang, Ji Dong Wang, Zhou Fei Song

Study on Wheel Rail Interaction Force Real-Time Monitoring Method Based on Piezoelectric Sensing Technology
Authors: Ying Song, Yan Liang Du, Bao Chen Sun

Study on Three-Die-Forging of Yttrium Salt/Co3O4 Composite in Pseudo-Semi-Solid State
Authors: Yuan Sheng Cheng

High Conductively Conductive Coatings on Carbon Fabric by Electron Beam Evaporated Deposition
Authors: Feng Yan Li, Zhi Li Zhang

Self-Hardeninig Calcium Phosphate Composite Scaffold for Bone Tissue Engineering
Authors: Hong Lu, Chang Ren Zhou

Effect of Different Fillers on Microstructure and Mechanical Properties of Urethane Molecular Weight Polyurethane Composite
Authors: Xu Han, Dian Zhang, You Guan Xia, Jing He Liu

The Micro Physical Mechanism Study of Metal Rubber Material on Compressive Performance
Authors: You Yan Wang, Hong Bao Bai, Shu Ai Tao

Influence of Thickness Parameters on 2-2 Connect Based Piezoelectric Composites
Authors: Xin Cheng, Dong Yu Xu, Li Li Guo, Shi Feng Huang

Non Destructive Evaluation Based on Impedance Method Using Embedded DTS Sensor
Authors: Dong Yu Xu, Xin Cheng, Shi Feng Huang, Xin Hua Jiang

Factors Influencing Adsorption of Pr@ on Modified Activated Carbon
Authors: Hong Yan Ren

Synthesis and Performance Study of Polybutyl Starch C carbonate Copolymerization Function Materials
Authors: Yan Bo Wu, Cheng Fei Li, Mel Ya Han

A New Way to Manufacture a Carbon Nanofiber Superabsorber
Authors: Xing Feng Hui, Chi Caih Caih Cai, Bing Yang Li, Yu Qian Chou, Chi Min Shu

Synthesis of Hydroxyapatite in Microemulsion and Its Adsorption Properties for Human Serum Albumin
Authors: Xin Peng Zhang, Yan Li, Yan Ming Yang, Gong Wei, Yuan Yuan Yu, Qin Wei, Bin Du

Experimental Investigation on the Embracing Force of Medical NiTi Memory Alloy Anti-Engraving Fixator
Authors: Guo Ping Chen, Jia Lin Tao, Dai Guan Zhang, Liang Tang

Monitoring Beam-Column Joint in Concrete Structures Using Phase-Impedance Sensors
Authors: Bahador Sabri Davoodi, Yao Wen Yang, Li Bing

567 papers on 36 pages: 1 2 [3] ...[38] [next]

http://www.scientific.net/AMR.79-82
11/08/2009
Multi-Functional Materials and Structures II

Advanced Materials Research Volumes 79-82

Papers Abstracts
doi:10.4028/www.scientific.net/AMR.79-82

567 papers on 38 pages: [prev] [1] ... [16] [17] [18] [19] [20] [21] [22] ... [38] [next]

Finite Element Meshing Simulation of 308 Stainless Steel Cathodic Protection Models in the Seawater
Authors: H. Yuan Sun, Wei Wang, L. Jiao Ren

The Effect of Creep on Morphology Change of Surface Groove on Fractography of TBCs during Thermal Oxidation Cycles
Authors: Xie Huang, Jun Ding, K. J. Kang

Numerical Investigation on the Effect of Copper Filler Thickness on the Brazed Residual Stress
Authors: Qiao Yun Xie, Xiang Ling

Mathematical Modeling of the Fracture Toughness of Phenol Formaldehyde Composites Reinforced with E-Glass Fibers
Authors: H. K. W. Wang, D. P. Nareshkar

Numerical Simulation of Thermal Cycle of In-Service Welding on X70 Steel Gas Pipeline
Authors: Y. Hua Chen, Yong Wang, Zheng Fang Wang

A Study of Process-Induced Weakening of Curing Mold of Composite Structures
Authors: Guan Guo Yue, Bo Ming Zhang, Shi An Li, Yu Hong Dai, Cheng Cheng, Yan Zhuang, Yang Gai Wang

Calculation and Analysis of Voltage Electron Structures of the Precipitated Phase in Al-Cu Alloys
Authors: Wei Dong Liu, Shao Quan

Identification of Determination in Anisotropic Laminated Plate
Authors: Chao Du, Qiu Qing Ni, Toshichi Natsu

Atomic Simulation of the Healing Deformation of a Single-Crystal Simply Supported Nano-Beam
Authors: Wen Bin Ni, Yan Wei Zhao, Yun Hong Liu, Feng Ying Wang, Xing Yin

Three-Dimensional Numerical Simulation of Residual Stresses by Shot Peening
Authors: Hong Wei Zhang, Yi Du Zhang, Yong Wu

Quantum Chemical Calculation of Maleic Anhydride Ring-Opening Reaction
Authors: Ming Zhang, Zh. Xiong Huang, Yan Gu

Authors: You Jing, Sh. Hong Wang, Xiang Gao Li

First-Principles Calculations on the Geometry and Electronic Structure of Rutile TiO2 (110) Surface
Authors: Hong Bin Su, Ping Yang, Jin Biao Wang, Nan Huang

Dynamic Models for Meso-Nano-Scale Damping and Its Feedback Linearization
Authors: Chang Zhang, Lin Xiang Wang

Simulation on Uniaxial-Tension Behavior of NiTi Shape Memory Alloy Films
Authors: Shuang Shuang Sun, Jing Dong

567 papers on 38 pages: [prev] [1] ... [16] [17] [18] [19] [20] [21] [22] ... [38] [next]
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Year</td>
<td>2009</td>
</tr>
<tr>
<td>Title</td>
<td>Multi-Functional Materials and Structures II [online]</td>
</tr>
<tr>
<td>Authors/Editors</td>
<td>Yansheng Yin and Xin Wang</td>
</tr>
<tr>
<td>Published in</td>
<td>Advanced Materials Research, Volumes 79 - 82</td>
</tr>
<tr>
<td>Category</td>
<td>Selected, peer reviewed papers from the 2nd International Conference on Multi-functional Materials and Structures, October 9-12, 2009, Qingdao, Shandong, P. R. China</td>
</tr>
<tr>
<td>Pages</td>
<td>2374</td>
</tr>
<tr>
<td>Edition</td>
<td>softcover, 2-vol. set</td>
</tr>
<tr>
<td>Description</td>
<td>With the rapid development of science and technology, the functionalization of structural materials, and the structurization of functional materials are attracting increasing attention in the scientific and engineering fields. The development of multi-functional materials and structures (MFMS), at the micro- and nano-scale levels, has grown rapidly due to the requirement of increasing safety margins for all infrastructure, biomedical and engineering elements. Multi-functional material systems are capable of performing multiple “primary” functions, simultaneously or sequentially in time, and are specially designed to improve system performance via a reduction in the redundancy between sub-system materials and functions. Materials having special structures can exhibit multi-functional properties. For example, shape-memory alloys can act as actuators as well as sensors, and the aim of composite materials is to exploit each aspect’s advantages; plus their synergistic effect. The current collection of peer-reviewed papers focuses on multi-functional materials and structures for various engineering applications, and makes a valuable contribution to the literature on the subject.</td>
</tr>
<tr>
<td>TOC</td>
<td>Table of Contents</td>
</tr>
<tr>
<td>Prices</td>
<td>USD: 690.00 / EUR: 500.00</td>
</tr>
</tbody>
</table>

Add to Basket

- Print version (ISBN: 978-0-87849-304-3)
- CD version (ISBN: 978-3-908454-73-1)

Quantity:

1 Add to basket
Preface

With the rapid development of science and technology, the functionalization of structural materials, and the structuration of functional materials attract more attention in scientific and engineering fields. The development of multi-functional materials and structures (MFMS), at the levels of micro and nanoscale, has grown rapidly due to the requirement of an increasing safety margin of all infrastructure, biomedical and engineering elements. Multi-functional material systems are capable of performing multiple "primary" functions simultaneously or sequentially in time, and are specially developed to improve system performance through a reduction of redundancy between subsystem materials and functions.

Materials with special structure can present multi-functional properties. For example, shape memory alloys can act as actuators as well as sensors, and the aim of composite materials is to exhibit each part's advantages and their synergistic effect. Multi-functional materials and structures are not only the basic tendency for the development of ocean materials, but also the inevitable result of mankind's eagerness to explore new materials and structures. Namely, materials themselves can intrinsically possess multi-function related with their mechanical, thermal, electrical and others properties, and, mankind always takes the initiative to optimize or combine the advantages of all kinds of materials.

The scope of this conference is mainly focused on multi-functional materials and structures for different engineering applications ranging from smart materials, nanomaterials and nanotechnology to ocean engineering materials.

Due to the healthy financial situation of the Conference, all students participants are able to enjoy the same benefits as full registrants, all participants to this conference will definitely have an opportunity to communicate with the most outstanding materials scientists and get acquainted with the latest developments in the area of multi-functional materials and structures, and their applications for science and engineering. This proceedings covers all technical papers submitted to "The 2nd International Conference on Multifunctional Materials and Structures (MFMS-2009)" which will be held on 9-12 October 2009, Qingdao. The present 550 papers are the cream of 1500 submitted abstracts, selected after rigorous review, and focus mainly on the frontier research works done by the various authors.

We gratefully appreciate the financial supports from K. C. WONG EDUCATION (Hong Kong), the Department of Engineering and Materials Science of National Natural Science Foundation Committee, the Ocean University of China. The editors would like to express the sincere appreciation and thanks to all the authors for their scientific contributions to the proceedings of the 2nd International Conference on Multi-functional Materials and Structures". We convey our gratitude to all the reviewers for their time and dedication. We are also thankful to the members of organizing committee and international advisory committee; without their valuable advices, the Conference would not be to run in such success.

Yansheng Yin
On-behalf of the organizing committee of MFMS 2009
9 July 2009
Multi-Functional Materials and Structures II
doi:10.4028/www.scientific.net/AMR.79-82

Preface
doi:10.4028/www.scientific.net/AMR.79-82.-1
Multi-Functional Materials and Structures II

Advanced Materials Research Volumes 79 - 82

Papers: 165 papers on 38 pages: [prev] [...] [16] [17] [18] [19] [20] [21] [22] [...] [next]

- Research on Ultimate Behavior of Concrete under External Load Based on Discontinuous Medium Mechanical Model [E3 189 K]
 Authors: Haomin H, Shao Cai Li

- Coupled Numerical Analysis of the Void-Crack Mechanism for Open-Cracked Large Stone Asphalt Mixes [E3 352 K]
 Authors: Hong Biao Gao, Shuai Fa Chen

- Finite Element Method Simulation of 3D Exposed Cathodic Protection Models in the Seawater [E3 374 K]
 Authors: Hu Yuan Sun, Wei Wang, Li Juan Sun

- The Effect of Compressive Strength on the Morphology of Surface Grooves of Fracture in TBCs during Thermal Cycling [E3 504 K]
 Authors: Xia Huang, Jia Ming, K.J. Kang

- Numerical Investigation on the Effect of Copper Filler Thickness on the Brazed Residual Stress [E3 369 K]
 Authors: Gao Yun Xie, Xiang Ling

- Mathematical Modeling of the Fracture Toughness of Phenol Formaldehyde Composites Reinforced with E-Sphere [E3 240 K]
 Authors: H.K., W. Xiang, N. Pattaraphakopeo

- Numerical Simulation of Thermal Cycle of In-Situ Welding of CFRP Steel Plate [E3 321 K]
 Authors: Yu Hua Chen, Yong Wang, Zhao Fong Wang

- A Study on Process Induced Vibration of Cutting Head of Composite Structure [E3 362 K]
 Authors: Guang Qing Ye, Bo Meng, Shuai Yu Di, Fu Hong Di, Cheng Zhang, Xiao Zhu Li, Yong Gui Wang

- Calculation and Analysis of Electron Structures of the Precipitated Phases in Ni-Cu Alloys [E3 301 K]
 Authors: Wei Dong Liu, Hui Qiu

- Identification of Disorientation in Anisotropic Laminated Plate [E3 168 K]
 Author: Chen Du, Qing Qiong N, Yoshikazu Nakajima

- Atomic Simulation of the Bonding Deformation of a Single-Crystal Simply Supported Nanobeam [E3 519 K]
 Authors: Wei Bin N, Jian Wei Zhao, Yun Hong Liu, Feng Ying Wang, Xing Yin

- Three-Dimensional Numerical Analysis of Residual Stress by Shot Peening [E3 211 K]
 Authors: Wei Heng Zhang, Yi Du Zhang, Qiong Wu

- Quantum Chemical Calculation of Malachite-Reductive Ring-Closing Reaction [E3 201 K]
 Authors: Ming Zhang, Zhi Xiong Huang, Yan Qian

 Authors: You Jing, Shui Peng Wang, Xiang Qian Li

- First-Principle Calculations on the Geometry and Electronic Structure of Rutile TiO2 (110) Surface [E3 216 K]
 Authors: Hong Bin Shi, Peng Yang, Jin Biao Wang, Nan Huang

570 papers on 38 pages: [prev] [...] [16] [17] [18] [19] [20] [21] [22] [...] [next]
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Year:</td>
<td>2009</td>
</tr>
<tr>
<td>Title:</td>
<td>Multi-Functional Materials and Structures II [online]</td>
</tr>
<tr>
<td>Authors/Editors:</td>
<td>Yansheng Yin and Xin Wang</td>
</tr>
<tr>
<td>Published in:</td>
<td>Advanced Materials Research, Volumes 79 - 82</td>
</tr>
<tr>
<td>Category:</td>
<td>Selected, peer reviewed papers from the 2nd International Conference on Multi-functional Materials and Structures, October 9-12, 2009, Qingdao, Shandong, P. R. China</td>
</tr>
<tr>
<td>Pages:</td>
<td>2374</td>
</tr>
<tr>
<td>Edition:</td>
<td>softcover, 2-vol. set</td>
</tr>
<tr>
<td>Description:</td>
<td>With the rapid development of science and technology, the functionalization of structural materials, and the structurization of functional materials are attracting increasing attention in the scientific and engineering fields. The development of multi-functional materials and structures (MFMS), at the micro- and nano-scale levels, has grown rapidly due to the requirement of increasing safety margins for all infrastructure, biomedical and engineering elements. Multi-functional material systems are capable of performing multiple "primary" functions, simultaneously or sequentially in time, and are specially designed to improve system performance via a reduction in the redundancy between sub-system materials and functions. Materials having special structures can exhibit multi-functional properties. For example, shape-memory alloys can act as actuators as well as sensors, and the aim of composite materials is to exploit each aspect's advantages; plus their synergistic effect. The current collection of peer-reviewed papers focuses on multi-functional materials and structures for various engineering applications, and makes a valuable contribution to the literature on the subject.</td>
</tr>
<tr>
<td>TOC:</td>
<td>Table of Contents</td>
</tr>
<tr>
<td>Prices:</td>
<td>USD: 690.00 / EUR: 500.00</td>
</tr>
</tbody>
</table>

Add to Basket

- [] Print version (ISBN: 978-0-87849-304-3)
- [] CD version (ISBN: 978-3-906454-73-1)

Quantity:

1 [] Add to basket