Unimaginable catastrophe struck the coasts of Indian Ocean in the morning of January 26, 2004, wiping out more than 275,000 human life at a stroke from the face of the earth. It was the killer Tsunami, that originated its journey at the epicenter of the earthquake (of intensity 9.2) near Banda Aceh in Indonesia and traveled as long as to Port Elizabeth in South Africa, covering a distance of more than 8,000 km and bringing unprecedented devastation to the countries like Indonesia, Thailand, Sri Lanka, India and others.

All of us were shocked saddened and felt helpless, wanted to do something in accordance to our own ability. I as a scientist working in India and interested in nonlinear dynamics, soliton and related phenomena, decided to contribute by organizing a dedicated effort by world experts to study different aspects of the Tsunami and other oceanic waves with special emphasis on the nonlinear connection of this problem. Our Centre for Appl. Math. & Comp. Sc. (CAMCS) of our Institute, specially my colleague Prof Bikas Chakrabarti enthusiastically supported the idea and came along with the support of a generous fund.

In contrast to the conventional linear theory of Tsunami, our emphasis on nonlinearity is in part related to my own conviction for its need, especially for describing the near-shore evolution of the waves with varying depth. The other motivation was the realization that, though a large mass of literature is already devoted to Tsunami and related topics, no consolidated collective study has been dedicated to nonlinear aspects of Tsunami and other oceanic waves. This was in spite of the fact that the results obtained through conventional studies are not all convincing and conclusive and in spite of a group of internationally well known experts, as evident from the present volume, have long been emphasizing on the importance of nonlinearity in this regard.

Therefore as a first step we organized an international meeting on the same topic: *Tsunami & Nonlinear Waves* in Saha Institute of Nuclear Physics, Calcutta (March 6-10, 2006). That helped us not only to identify and contact the leading experts in this field, but also to spend a highly beneficial and stimulating week in interacting and exchanging thoughts and experiences.
with some of them. I am also thankful to the Springer-Verlag for offering to publish this edited volume with interest in their Geo-Science series. This volume is based not only on selected lectures presented in the conference (Caputo (France), Dias (France), Fujima (Japan), Lakshmanan (India), Rao (India), Segur (USA), Shankar (India)), but also on the contributions from other experts well known in the field: Grimshaw (UK), Kharif (France), Madsen (Denmark), Weiss (USA), Yalciner (Turkey), Zakharov (USA) and their collaborators, who could not participate in the conference.

This volume has 14 chapters which I have divided loosely into 2 parts: Propagation and Source & Run up, for convenience, though many chapters in fact are overlapping. I have also tried to arrange the chapters from more theoretical to more application oriented, though again not in a strict sense. The overall emphasis is on theoretical and mathematical aspects of the oceanic waves, though the authors have given ample introduction to their subjects, starting the material from the beginning before taking the readers to the applicable research level with needed scientific rigor.

Hope this volume will be equally interesting and fruitful to the experts actively working or planning to work in this field, as well as to the common people who got interested in the subject just after 2004 and even to the Government bureaucrats, who are forced now to take interest in such events.

Calcutta, December 2006

Anjan Kundu

Contents

Part I Propagation

Waves in shallow water, with emphasis on the tsunami of 2004
Harvey Segur .. 3

Integrable Nonlinear Wave Equations and Possible Connections to Tsunami Dynamics
M. Lakshmanan .. 31

Solitary waves propagating over variable topography
Roger Grimshaw .. 51

Water waves generated by a moving bottom
Denys Dutykh, Frédéric Dias .. 65

Tsunami surge in a river: a hydraulic jump in an inhomogeneous channel
Jean-Guy Caputo, Y. A. Stepanyants 97

On the modelling of huge water waves called rogue waves
Christian Kharif ... 113

Numerical Verification of the Hasselmann equation
Alexander O. Korotkevich, Andrei N. Pushkarev, Don Resio,
Vladimir E. Zakharov .. 135

Part II Source & Run up

Runup of nonlinear asymmetric waves on a plane beach
Irina Didenkulova, Efim Peitsovsky, Tammo Soomere, Narcisse Zahibo . . . 175
List of Contributors

Jean-Guy Caputo
Laboratoire de Mathématiques, INSA de Rouen, B.P. 8, 76131 Mont-Saint-Aignan cedex, France.
çaputo@insa-rouen.fr

David R. Fuhrman
Technical University of Denmark, Mechanical Engineering Department, Nils Koppels Allé, Building 403, DK-2800 Kgs. Lyngby, Denmark
drf@mek.dtu.dk

Denys Dutykh
Centre de Mathématiques et de Leurs Applications, Ecole Normale Supérieure de Cachan, 61 avenue du Président Wilson, 94235 Cachan cedex, France
dutykh@cmla.ens-cachan.fr

Frédéric Dias
Centre de Mathématiques et de Leurs Applications, Ecole Normale Supérieure de Cachan, 61 avenue du Président Wilson, 94235 Cachan cedex, France
dias@cmla.ens-cachan.fr

Irina Didenkulova
Institute of Applied Physics, Nizhny Novgorod, Russia
dii@hydroappl.sci-nnov.ru

Koji Fujima
Dept. of Civil and Environmental Eng., National Defense Academy, 1-10-20 Hashirimizu, Yokosuka, 239-8686 Japan.
fujima@nda.ac.jp

Roger Grimshaw
Loughborough University, Loughborough, LE11 3TU, UK
R.H.J.Grimshaw@lboro.ac.uk

H. Karakus, C. Ozer & G. Ozyurt
Department of Civil Engineering, Middle East Technical University, Ocean Engineering Research Center, 06531 Ankara, Turkey
khulya@metu.edu.tr, cozer@metu.edu.tr, gulizar@metu.edu.tr
Christian Kharif
Institut de Recherche sur les phénomènes Hors Equilibre, Marseille, France
kharif@irphe.univ-mrs.fr

Alexander O. Korotkevich
Landau Institute for Theoretical Physics RAS 2, Kosygin Str., Moscow 119334, Russian Federation
kao@landau.ac.ru

A. Kurkin & A. Zaitsev
Department of Applied Mathematics, Nizhny Novgorod State Technical University, 24 Minin Street, 603950 Nizhny Novgorod, Russia
kurkin@kis.ru, aizaytsev@mail.ru

M. Lakshmanan
Centre for Nonlinear Dynamics, School of Physics, Bharathidasan University, Tiruchirappalli - 620 024
lakshman@cnld.bdu.ac.in

Per A. Madsen
Technical University of Denmark, Mechanical Engineering Department, Nils Koppels Allé, Building 403, DK-2800 Kgs. Lyngby, Denmark
prm@mek.dtu.dk

Efim Pelinovsky
Institute of Applied Physics, Nizhny Novgorod, Russia
pelinovsky@hydro.appl.sci-nnov.ru

Andrei N. Pushkarev
Lebedev Physical Institute RAS,53, Leninsky Prosp., GSP-1 Moscow, 119991, Russian Federation

Waves and Solitons LLC, 918 W. Windsong Dr., Phoenix, AZ 85045, USA
andrei@cox.net

N. Paruchandra Rao
National Geophysical Research Institute, Hyderabad 500 007, India
raonpc@ngri.res.in

Don Resio
Coastal and Hydraulics Laboratory, U.S. Army Engineer Research and Development Center, Halls Ferry Rd., Vicksburg, MS 39180, USA

Harvey Segur
Department of Applied Mathematics, University of Colorado, Boulder, Colorado, USA
Segur@colorado.edu

R. Shankar
The Institute of Mathematical Sciences, C.I.T Campus, Chennai 600113, INDIA
shankar@imsc.res.in

Tarmo Soomere
Institute of Cybernetics, Tallinn, Estonia
soomere@cs.ioc.ee

Y. A. Stepanyants
Reactor Operations, ANSTO, PMB 1, Menai (Sydney), NSW, 2234, Australia.
Yury.Stepanyants@ansto.gov.au

Robert Weiss
Joint Institute for the Study of the Atmosphere and Ocean, University of Washington-NOAA Center for Tsunami Research, 7600 Sand Point Way NE, Seattle WA 98115, USA
weisrz@u.washington.edu

Kai Wünnewann
Institut für Mineralogie, Museum für Naturkunde, Humboldt-Universität zu Berlin, Invalidenstrasse 43, 10115 Berlin, Germany
kai.wuennewann@museum.hu-berlin.de

Ahmet C. Yalciner,
Department of Civil Engineering, Middle East Technical University, Ocean Engineering Research Center, 06531 Ankara Turkey,
yalciner@metu.edu.tr

Narcisse Zahibo
University of Antilles and Guyane, Guadeloupe, France

Vladimir E. Zakharov
Department of Mathematics, University of Arizona, Tucson, AZ 85721, USA
& Lebedev Physical Institute RAS,53, Leninsky Prosp., GSP-1 Moscow, 119991, Russian Federation
& Landau Institute for Theoretical Physics RAS 2, Kosygin Str., Moscow 119334, Russian Federation
& Waves and Solitons LLC, 918 W. Windsong Dr., Phoenix, AZ 85045, USA
zakharov@math.arizona.edu

narcisse.zahibo@univ-ag.fr
Due to an oversight a mistake appeared in the Preface.
The first sentence should read:

"Unimaginable catastrophe struck the coasts of the Indian Ocean in the morning of December 26, 2004, wiping out more than 275,000 human lives at a stroke from the face of the earth."