FYI.

Best regards
Tcd

-----Original Message-----
From: Tran, Canh-Dung (TFT, Geelong)
Sent: Thursday, 22 May 2008 11:21 AM
To: 'Ravi Jagadeeshan'
Subject: RE: Revision Requested for Manuscript

Dear Prof. Ravi,

Thank you for the reviews.
I will send back you our revised version with modifications and
explanation in 60 days.

Best regards,
Tcd

Dr. CD. Tran, Research Scientist, CSIRO
PO Box 21, Belmont, VIC 3216, Australia
Tel: +61 3 4641 4109 Fax: +61 3 5246 4057
Email: canh-dung.tran@csiro.au

-----Original Message-----
From: Ravi Jagadeeshan [mailto:ravi.jagadeeshan@eng.monash.edu.au]
Sent: Monday, 19 May 2008 11:26 AM
To: Tran, Canh-Dung (TFT, Geelong)
Subject: Re: Revision Requested for Manuscript

KOREA-AUSTRALIA RHEOLOGY JOURNAL
(http://www.rheology.or.kr/karj/karj.htm)

MS-Type: Full Paper
Title: "Computation of dilute polymer solution using BCF-RBFN based
method and Domain Decomposition technique"
Authors: Canh-Dung Tranl, David G. Phillips and Thanh Tran-Cong

Dear Tran

I enclose four reviews of your above-referenced manuscript. As you can
see, while the reviewers find that your work merits to be published in
the Korea-Australia Rheology Journal, the reviewers raise some issues
that should be addressed. I hope that you will find their remarks
helpful and look forward to receiving the revised version and a detailed
description of the changes you made. At that time I anticipate that a
second round of reviewing will be necessary. We would like to receive
your revision as soon as possible, 60 days at the latest.

With kind regards,
Ravi

--

Ravi Prakash Jagadeeshan
Reader
Department of Chemical Engineering
Monash University
Building 69, Room 213, Clayton Campus
Melbourne
VIC 3800
Australia
Phone: +61 3 9905 3274
Fax: +61 3 9905 5686
Email: ravi.jagadeeshan@eng.monash.edu.au
Web: http://users.monash.edu.au/~rprakash/
Review A

Review of the paper by Tran et al.

“Computation of dilute polymer solution using BCF-RBFN based method and Domain Decomposition technique”

Overall I think this paper is acceptable for publishing in KARJ. At the same time, however, I would like to bring the authors' attention to the points listed below.

- Authors just mentioned that their results generally agree with Laso’s data. It is more helpful if both results could be compared in the same plot.

- The meaning of “wall time” in the concluding remark is not clear.

- Some abbreviations have been used without stating the full words: SDE, TPS-RBF

- Some symbols have been used without the definition:
 \(< > \) in Eq. (5)
 \(\cdot < > \) in Eqs. (6), (7), (10)
 \(\mathbf{C}_\text{M}, \mathbf{C}_1 \)

- The meaning of some symbols, which are not used in the equations, is given in the text:
 \(p = -p_j (\nabla \cdot \mathbf{u}) \) in Eq. (4)
 \(b' > 0 \) in page 5, line 7
 \(B \) in page 6, line 2

- The resolution of Figs. 3, 4 is too low to read the text in them.

- The symbols in Fig. 5, \(R_s, R_{sb} \) are not consistent with those used in the text.
Review of

Computation of dilute polymer solution using BCF-RBFN based method and domain decomposition technique

Canh-Dung Tran, David G. Phillips and Thanh Tran-Cong

This manuscript proposes an efficient numerical method for solving a micro-macro flow problem of a dilute polymeric solution. In particular, a domain decomposition method is used together with the Brownian configuration field method, and a combined radial basis function and polynomial basis function method. The algorithm is tested by simulating the flow of a FENE fluid in the 10:1 planar contraction. Results are compared with the results of Laso et al. (1999).

The manuscript should be of interest to people in the field. However, it should not be accepted for publication until the following points are fully addressed.

1. The manuscript is not well written and is confusing in many places. The authors need to read through the manuscript carefully and correct the numerous logical and technical mistakes which make the manuscript tedious to read. I will not enumerate all these mistakes here, but will give a sampling.

 (a) Page 5: \(b^j \) is defined, but where is it used?

 (b) Page 5, Eq. (19): Are the authors taking \(m = 3 \)? If so, why?

 (c) Page 6, Line 2: \(B \) is defined after Eqs (20) and (21), but where is it used? Should this \(B \) be defined after Eqs (25) and (26) on page 7? If not, what is \(B \) in Eq. (25)?

 (d) Page 7: The authors write “Let \(\Omega_1 \) and \(\Omega_2 \) be the boundaries of \(\Omega_1 \) and \(\Omega_2 \)…”

 (e) Page 7, Eq. (26): Should the subscript of 1 in the third line be a subscript of 2?

 (f) Page 7: In the equation that defines \(c^i \), should \(c^{i-1} \) on the right-hand side be \(u_2^{i-1} \) or \(u_1^{i} \)?

 (g) Page 8: The sets \(G_b \) and \(G_w \) are used inconsistently. For example, sometimes the authors write \(k \in G_b \) and sometimes they write \(\Omega_b \in G_b \).

 (h) Page 8, Eqs (27) and (28): What does \(\Gamma_{kl} \neq 0 \) mean? Do they mean \(\Gamma_{kl} \neq 0 \)? If so, then it is not needed, since \(x \in \Gamma_{kl} \) is specified.

 (i) Table 2: The caption reads “Axisymmetric 10:1.” Should this be “Planar 10:1”?

 (j) Page 9: Is \(h \) really 0.003mm? Also, why write \(L_u = 6H \) and \(L_d = 60h \)? Since \(h \) is the characteristic length and \(H = 10h \), why not simply write \(L_u = L_d = 60h \)?

 (k) Page 9: Eq. (29): Specify the units of \(\lambda_H \).

 (l) Page 10: Are \(\Delta t = 0.005 \) and \(\lambda_H = 0.01 \) dimensionless here? Why doesn’t the value of \(\lambda_H \) here agree with the value of 2 specified in Eq. (29)?

 (m) Page 11: In the last paragraph, “4” should be “8” or in Table 2, “8” should be “4.”

 (n) Figure 10: The caption lists three profiles as being plotted, but the graph and its legend only show two profiles.

 (o) The values of \(L_u, L_d, R_u \) and \(R_d \) in Fig. 5 appear to have dimensions (since the text cites e.g. \(L_d = 60h \) and \(h = 0.003 \text{mm} \), which would give a value of \(L_d = 0.18 \text{mm} \)). The authors should state the dimensions or give nondimensional values. Also, \(R_d \) and \(R_u \) should be replaced with \(h \) and \(H \) for consistency with the text.
(p) In general, it appears that the values of x_1 and x_2 given on page 11 and in Figs. 6, 9-20 have dimensions (perhaps m?). The authors should state the dimensions or give nondimensional values for these quantities.

(q) Are the values of velocity and stress in the figures dimensionless?

2. Figure 6: If the fluid is shear-thinning, then shouldn’t its fully-developed velocity profile be more pluggish than the parabolic profile? In particular, shouldn’t the centerline velocity be lower for a shear-thinning fluid than for a Newtonian fluid? This figure seems to indicate otherwise.

Concerning the results:

3. Page 11: The authors should say how their vortex shape differs from that of Laso et al. (1999). They should also quantify the size of their vortex and the vortex produced in Laso et al. (1999), and compare the values.

4. Page 11: After reference to Figs (10) and (11), the authors state that their results “generally agree” with those of Laso et al. (1999). They should plot some data points from the graphs in Laso et al. (1999) in Figs (10) and (11) to establish a quantitative comparison.

5. The authors ran simulations with ensemble sizes of 200, 400 and 500 dumbbells (or configuration fields?). How do these compare with the ensemble sizes used in Laso et al. (1999)? Also, what is the size of the statistical errors in these simulations?

6. I see no reason to include both Figure 12 and 13, since they only differ by one curve. Likewise for Figures 14 and 15. Moreover, there is no reason to include Figure 20, since it contains no more information than that given in Figures 18 and 19.
In this paper a FENE 4:1 contraction flow is solved numerically using the numerical method described by Zerroukat et al. This numerical method is a collocation method that uses radial basis functions and random collocation points.

The first and third authors have already published a paper using this method in the KOREA-AUSTRALIA RHEOLOGY JOURNAL. The originality of the paper is i) to use domain decomposition techniques to lower the CPU time ii) to present numerical results for the 4:1 test case.

The paper deserves in principle to be published. However, the following points have to be addressed before publication, specially the last one.

- Eq. (4) corresponds to a penalty method for the pressure, this should be explicitly written.

- First sentence section 2.1 : in principle, a second order predictor-corrector scheme for an ode is not of second order for a sde !

- Second paragraph section 2.1 : please give a reference.

- After eq. (11) : what is the meaning of the word "neuron" ? Same with "training".

- Eq. (14)(15)(16) : please specify the min and max indices.

- Eq. (17)(18) : not clear, please expand.

- Eq. (22) : how is the min found ? Does this correspond to solving a linear system ? Which method is used for solving (22) ? What is the rate of convergence of the method ?

- Section 3, after the second paragraph : the text is badly placed, this should be in section 2.

- Section 5 : an experimental convergence analysis with respect to m and bar m is missing here.
This manuscript reports the flows of dilute polymer solutions by combining BCF/RBFN and DD technique. BCF/RBFN was previously reported by the authors, and they combined to overcome the limited resources by applying parallel DD technique. The manuscript is well organized and relatively easy to read, and will deserve for publication in the journal. But I would suggest the authors to change the manuscript before publication. As a reader, it is important to convince how the suggested algorithm or solutions are reliable and precise. The authors refer the solutions of Lasso, but there is no direct comparison. They simply mention ‘in very good agreement with the results of Lasso et al. generally,’ or ‘the present results generally agree with those obtained by Lasso et al.’. The solution of Lasso will not be precise because they could manage the solution with only limited number of degrees of freedom. I guess the current simulation will be more precise compared to that of Lasso. However direct comparison with numbers or graphs is inevitable to have an idea how this algorithm works and how much it is precise. Also the reproducibility of the simulation needs to be provided. Error bar in one figure will be enough. I think this is a must for every simulation paper.

Minor comments:
- the total number of degrees of freedom needs to be provided
- quality of the figures is poor, and needs to be improved (very hard to read)
- in the figures (or captions), the position at x2 is hard to read. It would be better to use x2/H rather than x2. then the range will be from zero to one for example, rather than at 0.00020, 0.00047, 0.00114 etc.
- figures 12,13 and 14,15: the position at x2 looks similar in the caption, but the curves look different.
- figure 13: the peak before x1=0.2 seems strange (too narrow) compared to other figures as well as many previous reports.
Korea-Australia Rheology Journal

The Korea-Australia Rheology Journal is the official transactions co-published quarterly by the Korean Society of Rheology and the Australian Society of Rheology. The Korea-Australia Rheology Journal is devoted to fundamental and applied research with immediate or potential value in rheology.

Co-Editors
Hyungsu Kim, Dankook University
Ravi P. Jagadeeshan, Monash University

Associate Editors
Ihyun Wook Jung, Korea University
Justin J. Cooper-White, University of Queensland

Editorial Board
Kyung Hyun Ahn (Seoul National University)
Young-Don Kwon (Sungkyunkwan University)
Seung Joon Park (Korea Polytechnic University)
Howard See (The University of Sydney)
Ki-Won Song (Pusan National University)
David Williams (Australian National University)
Jae Ryoun Yoon (Seoul National University)
Peter Davis (RMIT University)
O Ok Park (KAIST)
Byung Ohk Rhee (Ajou University)
Sehyun Shin (Korea University)
Tam Sridhar (Monash University)
Jong-Pyo Wu (Myongji University)
Kyung Hwan Yoon (Dankook University)

International Advisory Board
Gerald G. Fuller (Stanford University, USA)
Sangtae Kim (Purdue University, USA)
Jan Mewis (K.U. Leuven, Belgium)
Eric Shaqfeh (Stanford University, USA)
Manfred H. Wagner (TU Berlin, Germany)
Hiroshi Watanabe (Kyoto University, Japan)
Yong Lak Joo (Cornell University, USA)
Gareth H. McKinley (MIT, USA)
Susan J. Muller (UC Berkeley, USA)
Hiromoto Usui (Kobe University, Japan)
K. Walters (University of Wales, Aberystwyth, UK)
H.H. Winter (University of Massachusetts, USA)

Instructions for Authors
Please refer to the detailed instructions in the rear of this issue or visit the homepage of the Korean Society of Rheology (http://www.rheology.or.kr).

Subscription Information
The Korea-Australia Rheology Journal is published quarterly; it is distributed free of charge to members of the Korean Society of Rheology and the Australian Society of Rheology. For others, including institutions, subscription prices are available upon request from the editorial offices. Subscriptions are accepted on a prepaid basis only and are for a calendar year. Issues are sent by air-mail unless otherwise requested. Claims for missing issues will be accepted only after the following issue has been received. A copy of the mailing label or the subscriber reference number should accompany claims in order to expedite handling.

Advertisements
Inquiries concerning advertisements for inclusion in the Journal should be directed to the editorial offices or to one of the Co-editors, Hyungsu Kim (E-mail: hkim@dku.edu).

The contents of this journal are indexed in Science Citation Index-Expanded (SCIE), Web of Science (WoS), Chemistry Citation Index (CCI), Materials Science Citation Index (MSCI) and Research Alert.
Korea-Australia Rheology Journal

Volume 21, Number 1, March 2009

Articles

Computation of dilute polymer solution flows using BCF-RBFN based method and domain decomposition technique
Canh-Dung Tran, David G. Phillips and Thanh Tran-Cong .. 1

Geometric interpretation of time-temperature superposition
Kwang Soo Cho .. 13

Investigation of the numerical analysis for the ultrasonic vibration in the injection molding
Jaeyeol Lee and Naksoo Kim ... 17

Effect of viscoelasticity on two-dimensional laminar vortex shedding in flow past a rotating cylinder
Ju Min Kim, Kyung Hyun Ahn and Seung Jong Lee ... 27

Fluid-structure interactions of physiological flow in stenosed artery
Bahtiyor Buriev, Taedong Kim and Taewon Seo ... 39

Numerical description of start-up viscoelastic plane Poiseuille flow
Kwang Sun Park and Youngdon Kwon .. 47

Numerical study on the effect of viscoelasticity on pressure drop and film thickness for a droplet flow in a confined microchannel
Changkwon Chung, Ju Min Kim, Kyung Hyun Ahn and Seung Jong Lee 59

Transient filling simulations in unidirectional fibrous porous media
Hai Long Liu and Wook Ryol Hwang ... 71