Optimization of an Ultrasonic-Assisted Biodiesel Production Process from One Genotype of Rapeseed (TERI (OE) R-983) as a Novel Feedstock Using Response Surface Methodology

Almasi, Sara and Ghobadian, Barat and Najafi, Gholam Hassan and Yusaf, Talal and Soufi, Masoud Dehghani and Hoseini, Seyed Salar (2019) Optimization of an Ultrasonic-Assisted Biodiesel Production Process from One Genotype of Rapeseed (TERI (OE) R-983) as a Novel Feedstock Using Response Surface Methodology. Energies, 12 (14). pp. 1-14.

[img]
Preview
Text (Published Version)
energies-12-02656-v2.pdf
Available under License Creative Commons Attribution 4.0.

Download (2MB) | Preview

Abstract

In recent years, due to the favorable climate conditions of Iran, the cultivation of rapeseed has increased significantly. The aim of this study was to investigate the possibility of biodiesel production from one genotype of rapeseed (TERI (OE) R-983). An ultrasonic approach was used in order to intensify the reaction. Response surface methodology (RSM) was applied to identify the optimum conditions of the process. The results of this research showed that the conversion of biodiesel was found to be 87.175% under the optimized conditions of a 4.63:1 molar ratio (methanol to oil), 56.50% amplitude, and 0.4 s pulses for a reaction time of 5.22 min. Increasing the operating conditions, such as the molar ratio from 4:1 to 5.5:1, amplitude from 50% to 72.5%, reaction time from 3 min to 7 min, and pulse from 0.4 s to 1 s, increased the FAME (fatty acid methyl esters) yield by approximately 4.5%, 2.3%, 1.2%, and 0.5%, respectively. The properties of the TERI (OE) R-983 methyl ester met the requirements of the biodiesel standard (ASTM D6751), indicating the potential of the produced biodiesel as an alternative fuel.


Statistics for USQ ePrint 48975
Statistics for this ePrint Item
Item Type: Article (Commonwealth Reporting Category C)
Refereed: Yes
Item Status: Live Archive
Faculty/School / Institute/Centre: Historic - Faculty of Health, Engineering and Sciences - School of Mechanical and Electrical Engineering (1 Jul 2013 - 31 Dec 2021)
Faculty/School / Institute/Centre: Historic - Faculty of Health, Engineering and Sciences - School of Mechanical and Electrical Engineering (1 Jul 2013 - 31 Dec 2021)
Date Deposited: 13 Jun 2022 06:15
Last Modified: 12 Jul 2022 00:55
Uncontrolled Keywords: TERI (OE) R-983; biodiesel; ultrasonic; RSM; renewable energy; novel feedstock
Fields of Research (2008): 09 Engineering > 0902 Automotive Engineering > 090201 Automotive Combustion and Fuel Engineering (incl. Alternative/Renewable Fuels)
Fields of Research (2020): 40 ENGINEERING > 4002 Automotive engineering > 400201 Automotive combustion and fuel engineering
Identification Number or DOI: https://doi.org/10.3390/en12142656
URI: http://eprints.usq.edu.au/id/eprint/48975

Actions (login required)

View Item Archive Repository Staff Only