Mechanical alloying boosted SnTe thermoelectrics

Chen, Zhiyu and Sun, Qiang and Zhang, Fujie and Mao, Jianjun and Chen, Yue and Li, Meng and Chen, Zhi-Gang ORCID: and Ang, Ran (2021) Mechanical alloying boosted SnTe thermoelectrics. Materials Today Physics, 17:100340. pp. 1-8.


The well converged transporting valence bands in SnTe-MnTe alloys ensures a superior electronic performance, while their thermal transport properties still need to be further optimized for higher thermoelectric performance. Herein, the mechanical alloying is utilized to fabricate the SnTe-15%MnTe-2%Bi alloys, leading to a remarkable reduction of grain size as well as the formation of dense dislocations. Unexpectedly, the solubility of MnTe is reduced to ∼6% by mechanical alloying at room temperature, inducing an enhanced phonon scattering from nanoprecipitates. These full-scale hierarchical microstructures effectively decrease the lattice thermal conductivity of SnTe-15%MnTe-2%Bi to ∼0.5 W m−1 K−1 at 850 K. In addition, the increased vacancy formation energy triggers a reduction in carrier concentration (∼3 × 1019 cm−3) due to the decreased MnTe content in matrix. Moreover, the energy filtering effect through precipitate-matrix interface enables an improvement in Seebeck coefficient. Accordingly, the figure of merit of SnTe-15%MnTe-2%Bi is dramatically increased to ∼1.5 at 850 K by mechanical alloying. This work clearly demonstrates that mechanical alloying changes the composition and microstructure of materials, which significantly affect the thermoelectric transport properties, enabling an obvious performance enhancement.

Statistics for USQ ePrint 48498
Statistics for this ePrint Item
Item Type: Article (Commonwealth Reporting Category C)
Refereed: Yes
Item Status: Live Archive
Additional Information: Files associated with this item cannot be displayed due to copyright restrictions.
Faculty/School / Institute/Centre: Current - Institute for Advanced Engineering and Space Sciences - Centre for Future Materials (1 Jan 2017 -)
Faculty/School / Institute/Centre: Current - Institute for Advanced Engineering and Space Sciences - Centre for Future Materials (1 Jan 2017 -)
Date Deposited: 24 May 2022 03:26
Last Modified: 31 May 2022 02:13
Uncontrolled Keywords: Thermoelectric materials; SnTe; Hierarchical microstructures; Interfacial engineering; Mechanical alloying
Fields of Research (2008): 10 Technology > 1007 Nanotechnology > 100708 Nanomaterials
09 Engineering > 0912 Materials Engineering > 091203 Compound Semiconductors
09 Engineering > 0912 Materials Engineering > 091205 Functional Materials
Fields of Research (2020): 40 ENGINEERING > 4016 Materials engineering > 401603 Compound semiconductors
40 ENGINEERING > 4016 Materials engineering > 401605 Functional materials
34 CHEMICAL SCIENCES > 3403 Macromolecular and materials chemistry > 340301 Inorganic materials (incl. nanomaterials)
40 ENGINEERING > 4018 Nanotechnology > 401807 Nanomaterials
Identification Number or DOI:

Actions (login required)

View Item Archive Repository Staff Only