THE DEVELOPMENT AND EVALUATION
OF DNA VACCINES AGAINST WHOOPING
COUGH USING A MURINE RESPIRATORY
MODEL OF INFECTION

A dissertation submitted by

Scott Robert Fry, BSc (Hons)

For the award of

Doctor of Philosophy

2006
Abstract

Bordetella pertussis is the aetiological agent of whooping cough, a respiratory disease of humans that causes severe and potentially fatal manifestations in children. Whooping cough is endemic world-wide accounting for around 50 million cases and 300,000 deaths every year, with epidemics occurring every two to five years (Kerr & Matthews 2000). Although the current whole-cell and acellular vaccines are effective in conferring protection from clinical pertussis, they have been associated with serious systemic and local side reactions in up to a maximum of 18 percent of paediatric vaccinees after repeated boosters (Gold et al. 2003).

In this study, a suite of single antigen DNA vaccines, combination DNA vaccines and dual modality vaccines, were developed and evaluated for their potential to induce humoral and cell-mediated immune responses, and protective efficacy against *B. pertussis*, using the mouse respiratory challenge model. This study was based on the reported claims that DNA vaccines are capable of generating potent humoral and cell-mediated responses, and protection against numerous viral, parasitic and bacterial pathogens in small animal models. Four protective antigens, three of which are included in the currently-marketed acellular pertussis vaccine [aP], were evaluated as single antigen DNA vaccines, namely filamentous hemagglutinin (FHAB), pertactin (PRN), a genetically toxoided S1 subunit of pertussis toxin (PTS1.13L.129G) and genetically toxoided adenylate cyclase-hemolysin (CYAAL58), delivered either by the intramuscular (IM) route or by the oral route via attenuated *Salmonella typhimurium* strain SL3261. The immunogenicity and protective efficacy of these DNA vaccines was compared to that imparted by the DTaP (Infantrix™), a placebo-immunised group, and a vector-immunised group of mice. Two DNA vaccines encoding truncated FHA antigens, representing the entire immunodominant region (pcDNA3.1D/haB1) and dominant B cell epitopes (pcDNA3.1D/haB2), induced a predominantly Th1 response with high levels of IFN-γ and IL-2 produced by stimulated splenocytes *in vitro*. An antigen-specific IgG response was detected in the serum of mice but this was negated by an equivalent or larger IgG response to FHA in the serum of vector-immunised mice. Two AC-Hly DNA vaccines, encoding a genetically inactivated CyaA protoxin either alone (pcDNA3.1D/cyaAL58) or in combination with the accessory protein cyaC
Abstract

(pDNA3.1D/cyaAL58 + pDNA3.1D/cyaC), both induced a potent Th1 cytokine response. However, the serum IgG response was not significant due to the presence of cross-reactive antibodies in the sera of vector-immunised and sham-immunised mice (placebo).

A DNA vaccine encoding a genetically inactivated S1 subunit of pertussis toxin (pDNA3.1D/pts1.13L.129G), induced a purely Th1 response with high levels of IFN-\(\gamma\). No antigen-specific or cross-reactive IgG was detected in the sera of mice immunised with pDNA3.1D/pts1.13L.129G or vector only respectively. In contrast to the other antigens tested, the pertactin DNA vaccine induced a Th2-type response as indicated by a significant serum IgG response, the majority of which was IgG1, and lower levels of IFN-\(\gamma\) and IL-2. Mice immunised with each of the single antigen DNA vaccines showed a significantly improved rates of clearance compared to mice that received the vector only or placebo. Overall, their protective efficacy was inferior to that of the DTaP. It has been well established that effective immunisation against such a complex pathogen as B. pertussis requires multiple antigenic priming, with multi-component acellular vaccines often providing an improved level of protection compared to mono-component and two-component acellular vaccines. In order to induce a broad-spectrum immune response and thereby assess the true protective potential of DNA vaccination, a five-gene combination DNA vaccine was tested by direct IM injection of naked DNA (without any added adjuvant). The IM five-gene combination DNA vaccine generated strong Th1 responses to FHA, the inactivated S1 subunit of PT and inactivated CYAA, and a moderate serum IgG response to PRN. Importantly, the response to each antigen was equivalent or better than the respective single antigen DNA vaccines, which indicated that there was no antigenic competition. In fact, co-administration of the five genes resulted in an enhanced response to each antigen. The portal of entry for B. pertussis, like many other human pathogens, is via the mucosa and in the case of pertussis this is limited to the respiratory tract with no systemic dissemination in otherwise healthy individuals. Whilst the whole cell and acellular vaccines induce a potent serological response that can protect against B. pertussis infection, it is likely that the additional priming of a secretory response at the site of colonisation would inhibit colonisation, improve clearance of the pathogen from the lungs, and limit transmission. Hence, a five-gene combination DNA vaccine was delivered via the oral route using attenuated Salmonella typhimurium as the delivery vector, with the aim of stimulating a
Abstract

mucosal response in the respiratory tract via the common mucosal pathway. The oral combination DNA vaccine generated a strong systemic response but a poor mucosal antibody response to recombinant or native B. pertussis antigens. Mice immunised with the oral combination DNA vaccine cleared an experimental infection at a significantly faster rate than mice immunised with the oral vector (S. typhimurium harbouring the pcDNA3.1D vector), but the clearance data showed that it was not nearly as effective as the IM combination DNA vaccine or DTaP.

In an attempt to induce a dichotomous humoral and cell-mediated immune response, two DNA vaccine prime-acellular vaccine boost regimens were evaluated: a parenteral-parenteral strategy referred to as the parenteral dual modality vaccine and an oral-parenteral strategy referred to as the oral dual modality vaccine. Priming involved administration of a five-gene combination DNA vaccine via either IM injection or oral gavage, and the boosters consisted of a laboratory constituted three-component acellular vaccine given via SC injection. Dual modality vaccination successfully induced a dichotomous Th1/Th2 response that conferred a degree of protection that was equivalent to that obtained with the commercial DTaP. Interestingly, a mucosal IgG response was also detected in the lung washes of mice immunised with the laboratory constituted acellular vaccine (as part of the dual modality vaccines) or Infanrix™ DTaP that was considered to be due to transudation of antibodies from serum. This study has been the first to demonstrate that immunisation with a five-gene combination DNA vaccine can elicit a protective immune response that approaches the level of protection conferred by DTaP, as judged by the number of days required for clearance of the pathogen from the lungs of vaccinated mice. In addition, both the parental and the oral dual modality vaccines were found to provide an equivalent or better protection against challenge with virulent B pertussis than that imparted by the commercial DTaP. This was despite the fact that the oral DNA combination vaccine was essentially non-protective. The induction of humoral and CMI responses, particularly by the parenteral dual modality vaccine, are highly encouraging and warrant further investigations on the safety and characterisation of anamnestic immune responses induced by the inclusion of different types of adjuvants in the vaccine formulations.
Declaration

I declare that all experimental work, results and analyses reported in this dissertation are entirely my own effort, except where otherwise acknowledged. I also certify that the work is original, has not been previously submitted for any other award and was conducted during my enrolment as a Doctor of Philosophy candidate at the University of Southern Queensland. Animal experiments were approved by the University of Southern Queensland Animal Ethics Committee (Approval no. 03STU194).

Candidate:

.. ..
Scott Robert Fry Date

Endorsement

Supervisor: Associate Supervisor:

.. ..
A/Prof T.K.S. Mukkur A/Prof Grant Daggard

.. ..
Position Position

.. ..
Date Date
Acknowledgments

I would like to take this opportunity to thank all the people whose assistance has enabled this doctorate to be an invaluable learning experience. I am grateful to my principal supervisor A/Professor T.K.S. Mukkur for giving me the opportunity to undertake this project and for providing guidance and professional advice. Thanks must go to my associate supervisor A/Professor Grant Daggard for contributing to the experimental design and for proof-reading of the thesis. Dr Peter Dunn provided important input concerning the validity of the statistical analyses performed on the experimental data. Special thanks to the other members of the laboratory, Dr Austen Chen, Dr Renee Cornford-Nairn, Dr Joan Vickers, Mr Scott Kershaw and Mrs Youhong Xu for their technical assistance and friendship. The collective efforts of the technical staff of the Department of Biological and Physical Sciences, specifically Mrs Adele Jones, Mrs Julie Murphy, Mrs Morwenna Boddington, Mr Pat McConnell, Ms Rosilyn Gill and Mr Vic Schultz are greatly appreciated. Mr Oliver Kinder deserves a special mention for his skilled design and construction of the aerosol challenge chamber which was a crucial component of this research. I would also like to acknowledge A/Professor Mike Kotiw and Professor Stuart Hazell for giving me advice and the opportunity to undertake additional and valuable part-time work in their laboratory.

I would like to recognise my good friends Dr Austen Chen, Daniel Smith, David Jentz, Graeme Jennings, Ian Maher, Mike White, Phil Stainton and Wade Lavery for getting me out of the lab and giving me some resemblance of a social life during my candidature.

Throughout my life my family have been an amazing source of love and support, and in particular many thanks must go to my parents Robert and Kaye for their continual help and counsel. Finally, a deepest thank you to my wife Bindi, her sacrifices, encouragement and love have driven me to fulfil my goals. Bindi has been the silent force that has made this dream a reality.
Table of Contents

Abstract .. i
Declaration ... iv
Acknowledgments .. v
Table of Contents ... vi
List of Figures .. xvii
List of Tables ... xxii
List of Abbreviations ... xxv

Chapter 1 Literature Review .. 1

1.1 The Whooping Cough Syndrome ... 1
 1.1.1 Clinical Disease .. 1
 1.1.2 Epidemiology .. 2
 1.1.3 Treatment ... 5

1.2 Bordetella pertussis .. 5
 1.2.1 Key Virulence Factors .. 6
 1.2.1.1 Filamentous Hemagglutinin ... 6
 1.2.1.2 Pertactin (P.69) ... 6
 1.2.1.3 Pertussis Toxin .. 7
 1.2.1.4 Adenylate Cyclase-Hemolysin Toxin ... 8
 1.2.2 Additional Virulence Factors .. 10
 1.2.2.1 Fimbriae ... 10
 1.2.2.2 Dermonecrotic Toxin ... 10
 1.2.2.3 BrkA .. 11
 1.2.2.4 Tracheal Cytotoxin ... 11
 1.2.2.5 Lipopolysaccharide ... 12
 1.2.3 Regulation of Virulence-Associated Gene Expression .. 12
 1.2.3.1 Phenotypic Modulation ... 13
 1.2.3.2 Phase Variation ... 15

1.3 History of Whooping Cough Prophylaxis ... 15

1.4 Immunity to B. pertussis .. 17
 1.4.1 Principles of Immunology .. 17
 1.4.1.1 Acquired Immunity .. 17
 1.4.1.2 T Cell Control of an Acquired Immune Response .. 18
Table of Contents

1.4.1.3 Humoral or Cell-mediated Effectors ...19
1.4.1.4 Mucosal Immunity ..21
1.4.2 Response to Whole-cell Versus Acellular Immunisation26
1.4.3 Importance of a Humoral Response against *B. pertussis*27
1.4.4 Importance of Cell-Mediated Response against *B. pertussis*29
1.4.5 Mucosal Immunity against *B. pertussis* ..30
1.4.6 Mechanisms of Immune System Subversion31
1.4.6.1 Invasion and Survival within Host Cells31
1.4.6.2 Serum Resistance ...33
1.4.6.3 Manipulation of Immune Cells ..34
1.4.6.4 Antigenic Variation ...34
1.4.7 Summary of Immunity to *B. pertussis* ..35
1.5 DNA Vaccines ..36
1.5.1 Background of DNA Vaccine Technology36
1.5.2 Proof of Principle ..38
 1.5.2.1 IM DNA Vaccination ...38
 1.5.2.2 Particle Bombardment or Gene Gun Administration39
 1.5.2.3 Mucosal Delivery ..39
1.5.3 Adjuvants for DNA Vaccination ...41
1.6 Experimental Vaccines ...42
1.7 Objective of this Research Project ...43

Chapter 2 Methods ..44

2.1 Bacterial Strains and Culture Conditions ...44
 2.1.1 *Bordetella pertussis* ...44
 2.1.2 *Escherichia coli* ..44
 2.1.2.1 TOP10 ..44
 2.1.2.2 XL10-Gold ..44
 2.1.2.3 BL21 Codon Plus-RP ..44
 2.1.3 *Salmonella typhimurium* ...46
 2.1.3.1 P9121 ..46
 2.1.3.2 SL3261 ..46
2.1.4 Routine Culture and Preservation of Bacterial Strains46
2.2 Mammalian Cell Lines ...47
 2.2.1 Mammalian Cell Culture ...47
Table of Contents

2.2.1.1 Sub-Culture of Cell Lines ... 48
2.2.1.2 Preservation of Cell Lines ... 48
2.3 Plasmid Vectors ... 48
2.4 Isolation of Genomic DNA .. 49
2.5 Amplification of Target Gene Sequences from Genomic DNA 49
 2.5.1 Oligonucleotides .. 49
 2.5.2 Polymerase Chain Reaction (PCR) .. 56
 2.5.3 Purification of PCR Products ... 59
2.6 Cloning into pcDNA3.1D/V5-His-TOPO and pTrcHis2-TOPO Vectors 59
 2.6.1 Transformation of TOP10 E. coli ... 60
 2.6.2 Isolation of plasmid DNA ... 60
2.7 DNA Sequencing ... 60
 2.7.1 Oligonucleotides .. 61
 2.7.2 Big Dye Terminator Reaction ... 61
 2.7.3 Clean-up of Sequencing Reaction Extension Products 61
2.8 Site-Directed Mutagenesis of Toxin Inserts .. 62
 2.8.1 Oligonucleotides .. 62
 2.8.2 Site-Directed Mutagenesis PCR ... 63
 2.8.3 Transformation of XL10-Gold E. coli .. 64
2.9 Transient Expression of Recombinant Protein in Mammalian Cell Lines 64
 2.9.1 Isolation of Ultra Pure plasmid DNA .. 64
 2.9.2 Transfection .. 65
2.10 PAGE .. 66
2.11 Western Blotting ... 66
2.12 Purification of Recombinant Proteins .. 67
 2.12.1 Induction of Recombinant Protein Expression 67
 2.12.2 Transformation of BL21 CodonPlus(RP) E. coli 67
 2.12.3 Affinity Chromatography ... 68
 2.12.4 Quantitation of Protein ... 68
2.13 Toxicity Assays .. 69
 2.13.1 CHO Cell Assay for Determination of Pertussis Toxin Activity 69
 2.13.2 Cyclic AMP Assay for the Determining the Activity of Adenylate
 Cyclase-Hemolysin .. 70
 2.13.2.1 Transfection of CHO-K1 Cells ... 70
Table of Contents

2.13.2.2 Lysis of Treated CHO-K1 Cells ..71
2.13.2.3 cAMP Immunobassay ...71
2.14 Transformation of S. typhimurium ..73
 2.14.1 Preparation of RbCl/CaCl2 Competent Cells73
 2.14.2 Heat Shock Transformation ..73
 2.14.3 Electroporation ..74
 2.14.3.1 Preparation of Electrocompetent SL326174
 2.14.3.2 Pulse Transformation ..74
2.15 Assessment of the Immunogenicity and Protective Potential of the Candidate
 Vaccines in Mice ...75
 2.15.1 General Maintenance of Mice ..75
 2.15.2 First DNA Vaccine Trial ...76
 2.15.2.1 Large-Scale Isolation of Plasmid DNA for IM Delivery76
 2.15.2.2 Intramuscular Vaccination Regime ..78
 2.15.3 Second DNA Vaccine Trial ..78
 2.15.3.1 Culture of S. typhimurium Vaccine Strains for Oral Delivery79
 2.15.3.2 Preparation of a Pertussis Subunit Vaccine80
 2.15.3.3 Chemical Inactivation of Pertussis Toxin80
 2.15.4 Aerosol Challenge ..80
 2.15.4.1 Preparation of B. pertussis for Aerosol Challenge80
 2.15.4.2 Exposure of Mice to B. pertussis Tohama I Aerosols82
 2.15.5 Sampling ...82
 2.15.5.1 Serum ...82
 2.15.5.2 Lung Washing for Collection of BAL Fluid83
2.16 Immunological Determinations ...83
 2.16.1 Stimulation of Splenocytes Cultured in vitro83
 2.16.1.1 Preparation of Splenocyte Stimulants84
 2.16.1.2 Interferon-γ ELISA ..86
 2.16.1.3 Interleukin-2 ELISA ..86
 2.16.1.4 Interleukin-4 ELISA ...86
 2.16.2 Enzyme-linked Immunosorbent Assay of Serum and BAL Fluid86
2.17.3 Clearance of B. pertussis from Lungs ..87
2.18 Statistical Analysis ..87

Chapter 3 Development of an Aerosol Challenge Protocol88
Table of Contents

3.1 Introduction .. 88

3.2 Materials and Methods ... 90
 3.2.1 Chamber .. 90
 3.2.2 Materials for Chamber Construction .. 91
 3.2.3 Chamber Design .. 91
 3.2.4 Preparation of *B. pertussis* for Use in Challenge Studies 91
 3.2.5 Confirmation of Phase I Status of Passaged *B. pertussis* 93
 3.2.5.1 Preparation of *B. pertussis* Lysates for Western Blotting 93
 3.2.5.2 Western Blotting for Detection of AC-Hly Antigen 93
 3.2.6 Optimisation of Challenge Exposure Time ... 93
 3.2.7 Performance of the Aerosol Challenge Method .. 94

3.3 Results .. 94
 3.3.1 Confirmation of *B. pertussis* Virulence ... 94
 3.3.2 Optimum Exposure Time of Mice to *B. pertussis* Aerosols 95
 3.3.3 Assessment of the Aerosol Challenge Protocol .. 96

3.4 Discussion ... 97

Chapter 4 Filamentous Hemagglutinin DNA Vaccines: Development and
Characterisation of the Immune Response in Mice Vaccinated via the IM Route....
... 101

4.1 Introduction .. 101
 4.1.1 The Immunodominant Region of FHA as a Candidate for DNA Vaccination ... 102
 4.1.2 Selection of a Second FHA-Based DNA Vaccine Encoding Dominant B cell Epitopes .. 103

4.2 Methodology .. 105
 4.2.1 Culture of *B. pertussis* Tohama I and Extraction of Genomic DNA 105
 4.2.2 Construction of Recombinant Plasmids .. 105
 4.2.2.1 PCR Amplification of *fhaB* Gene from Genomic DNA 105
 4.2.2.2 Cloning of PCR products into pTrcHis2-TOPO and pcDNA3.1D/V5-His-TOPO Expression Vectors ... 106
 4.2.2.3 Screening of Plasmid Clones ... 106
 4.2.3 Expression of Recombinant FHAB Fusion Proteins in *E. coli* 108
 4.2.4 Purification of Recombinant FHAB Fusion Proteins 108
 4.2.5 Transient Transfection of COS-7 Mammalian Cells and Expression 108
4.2.6 Transformation of *S. typhimurium* with pcDNA3.1D/fhaB1 and pcDNA3.1D/fhaB2 ..108
4.2.7 Immunisation of Mice with pcDNA3.1D/fhaB1 and pcDNA3.1D/fhaB2 via the IM Route ..109
4.2.8 Determination of Immune Response and Protective Efficacy to DNA Vaccination ..109

4.3 Results ...110
4.3.1 Isolation of *B. pertussis* Tohama I Genomic DNA110
4.3.2 PCR Amplification of fhaB1 Fragments ...110
4.3.3 Generation of pcDNA3.1D/fhaB1 and pTrcHis2/fhaB1 Plasmids111
4.3.4 Amplification of the fhaB2 Fragment by PCR ...112
4.3.5 Generation of pcDNA3.1D/fhaB2 and pTrcHis2/fhaB2 Plasmids113
4.3.6 Expression of rFHAB1 and rFHAB2 in TOP10 *E. coli*114
4.3.7 Purification of rFHAB1 and rFHAB2 from BL21 *E. coli*115
4.3.8 Transient Expression of rFHAB1 and rFHAB2 in COS-7117
4.3.9 Immunogenicity of pcDNA3.1D/fhaB1 and pcDNA3.1D/fhaB2 DNA Vaccines ..117

4.3.9.1 Measurement of IFN-γ Production by Antigen-Stimulated Splenocytes ..118
4.3.9.2 Measurement of IL-2 Production by Antigen-Stimulated Splenocytes 119
4.3.9.3 Measurement of IL-4 Production by Antigen-Stimulated Splenocytes 121
4.3.9.4 Serum Antibody Response Following Vaccination with pcDNA3.1D/fhaB1 or pcDNA3.1D/fhaB2 via the IM Route121
4.3.10 Protective Efficacy of pcDNA3.1D/fhaB1 and pcDNA3.1D/fhaB2 Vaccination ...123

4.4 Discussion ..126

Chapter 5 Pertactin DNA Vaccine: Development and Characterisation of the Immune Response in Mice Vaccinated via the IM Route134

5.1 Introduction ...134
5.2 Methodology ..136
5.2.1 Construction of Recombinant Plasmids ..136
5.2.1.1 PCR Amplification of *prn* Gene from Genomic DNA136
5.2.1.2 Cloning of PCR products into pTrcHis2-TOPO and pcDNA3.1D/V5-His-TOPO Expression Vectors ..137
Table of Contents

5.2.1.3 Screening of Plasmid Clones ... 137
5.2.2 Expression of Recombinant PRN in *E. coli* .. 138
5.2.3 Purification of Recombinant PRN .. 138
5.2.4 Transient Transfection of COS-7 Mammalian Cells and Expression 139
5.2.5 Transformation of *S. typhimurium* with pcDNA3.1D/prn 139
5.2.6 Immunisation of Mice with pcDNA3.1D/prn via the IM Route 139
5.2.7 Determination of Immune Response and Protective Efficacy of the pertactin DNA Vaccine .. 139

5.3 Results .. 140
5.3.1 Preparation of pcDNA3.1D/prn and pTrcHis2/prn Constructs 140
5.3.2 Expression and Purification of rPRN from *E. coli* 141
5.3.3 Transient Expression of rPRN in COS-7 Cells ... 143
5.3.4 Immunogenicity and Protective efficacy of pcDNA3.1D/prn 144
5.3.4.1 Cytokine Profiles Following IM DNA Vaccination with pcDNA3.1D/prn ... 144
5.3.4.2 Serum Antibody Response Following Vaccination with pcDNA3.1D/prn via the IM Route .. 146
5.3.4.3 Protective Efficacy of pcDNA3.1D/prn Vaccination 148
5.3.5 Recognition of rPRN with Mouse Immune Sera .. 150

5.4 Discussion ... 151

Chapter 6 Pertussis Toxin DNA Vaccine: Development and Characterisation of the Immune Response of Mice Vaccinated via the IM Route 156

6.1 Introduction ... 156
6.2 Overview of Methodology ... 158
6.2.1 Construction of Recombinant Plasmids .. 158
6.2.1.1 PCR Amplification of *pts*1 Gene from Genomic DNA 158
6.2.1.2 Cloning of PCR products into pTrcHis2-TOPO and pcDNA3.1D/V5-
His-TOPO Expression Vectors .. 158
6.2.1.3 Screening of Plasmid Clones .. 159
6.2.2 Site-Directed Mutagenesis of *pts*1 Gene Inserts 159
6.2.3 Chinese Hamster Ovary (CHO) Cell Assay .. 160
6.2.4 Expression of rPTS1.13L.129G in *E. coli* ... 160
6.2.5 Purification of rPTS1.13L.129G .. 160
6.2.6 Transient Transfection of COS-7 Mammalian Cells and Expression 161

xii
Table of Contents

6.2.7 Transformation of S. typhimurium with pcDNA3.1D/pts1.13L.129G161
6.2.8 Immunisation of Mice with pcDNA3.1D/pts1.13L.129G via the IM Route 161
6.2.9 Determination of Immune Response and Protective Efficacy to DNA Vaccination ...161

6.3 Results ...162
6.3.1 Construction of pcDNA3.1D/pts1.13L.129G and pTrcHis2/pts1.13L.129G 162
6.3.2 Transient Expression of rPTS1.13L.129G in COS-7 Cells166
6.3.3 Cytotoxicity of Recombinant S1 Analogues ...167
6.3.4 Expression and Purification of rPTS1.13L.129G ..169
6.3.5 Immunogenicity and Protective efficacy of Vaccination with pcDNA3.1D/pts1.13L.129G by the IM Route ..170
 6.3.5.1 Cytokine Profiles Following DNA Vaccination with pcDNA3.1D/pts1.13L.129G ...170
 6.3.5.2 Serum Antibody Response Following DNA Vaccination with pcDNA3.1D/pts1.13L.129G ..173
 6.3.5.3 Protective Efficacy of pcDNA3.1D/pts1.13L.129G DNA Vaccine 174
6.4 Discussion ..176

Chapter 7 Adenylate Cyclase-Hemolysin DNA Vaccines: Development and Characterisation of the Immune Response of Mice Vaccinated via the IM Route ...182

7.1 Introduction ...182
7.2 Methodology ..185
 7.2.1 Construction of Recombinant Plasmids ...185
 7.2.1.1 PCR Amplification of cyaA Gene from Genomic DNA185
 7.2.1.2 PCR Amplification of cyaC Gene from Genomic DNA186
 7.2.1.3 Cloning of PCR products into pTrcHis2-TOPO and pcDNA3.1D/V5-His-TOPO Expression Vectors ..186
 7.2.1.4 Screening of Plasmid Clones ..187
 7.2.2 Site-Directed Mutagenesis of cyaA Gene Inserts188
 7.2.3 Cyclic AMP Assay ...189
 7.2.4 Expression of rCYAAL58 in E. coli ..189
 7.2.5 Expression of rCYAC in E. coli ...189
 7.2.6 Purification of rCYAAL58 and rCYAC Fusion Proteins189
 7.2.7 Transient Transfection of COS-7 Mammalian Cells and Expression190
Table of Contents

7.2.8 Transformation of *S. typhimurium* with pcDNA3.1D/cyaAL58 and pcDNA3.1D/cyaC ... 190

7.2.9 Immunisation of Mice with pcDNA3.1D/cyaAL58 Alone or in Combination with pcDNA3.1D/cyaC via the IM Route 190

7.2.10 Determination of Immune Response and Protective Efficacy to Adenylate Cyclase-Hemolysin DNA Vaccines ... 190

7.3 Results ... 191

7.3.1 PCR Amplification of the cyaA Gene ... 191

7.3.2 Generation of pcDNA3.1D/cyaA and pTrcHis2/cyaA Plasmids 192

7.3.3 PCR Amplification of the cyaC Gene .. 193

7.3.4 Generation of pcDNA3.1D/cyaC and pTrcHis2/cyaC Plasmids 194

7.3.5 Site-directed Mutagenesis of pcDNA3.1D/cyaA and pTrcHis2/cyaA 194

7.3.6 Expression of rCYAAL58 and rCYAC in COS-7 ... 195

7.3.7 Cytotoxicity of rCYAAL58 ... 197

7.3.8 Expression and Purification of rCYAAL58 and rCYAC from *E. coli* 199

7.3.9 Immunogenicity and Protective Efficacy of Vaccination with pcDNA3.1D/cyaAL58 Alone or in Combination with pcDNA3.1D/cyaC ... 201

7.3.9.1 Cytokine Profiles Following DNA Vaccination with pcDNA3.1D/cyaAL58 Alone or in Combination with pcDNA3.1D/cyaC ... 201

7.3.9.2 Serum Antibody Response Following Vaccination of Mice with pcDNA3.1D/cyaAL58 Alone or in Combination with pcDNA3.1D/cyaC ... 205

7.3.9.3 Protective Efficacy of Vaccination with pcDNA3.1D/cyaAL58 Alone or in Combination with pcDNA3.1D/cyaC by the IM Route ... 206

7.3.10 Recognition of rCYAAL58 and AC-Hly with Mouse Immune Sera 208

7.4 Discussion .. 209

Chapter 8 Immunisation of Mice with Five-Gene Combination DNA Vaccines and DNA/Protein Dual Modality Vaccines ... 214

8.1 Introduction .. 214

8.2 Overview of Methodology .. 216

8.2.1 Transformation of *S. typhimurium* SL3261 .. 216

8.2.2 Preparation of Five-Gene Combination DNA Vaccines 216

8.2.3 Preparation of In-House Acellular Pertussis Vaccine 217
8.2.4 Immunisation of Mice with Five-Gene Combination DNA Vaccines and
 Dual Modality Vaccines ...217
8.3 Results ..217
 8.3.1 Efficacy of Five-Gene Combination DNA Vaccines217
 8.3.1.1 Cytokine Profile following Five-Gene Combination DNA
 Vaccination ...217
 8.3.1.2 Serum IgG Response to Five-Gene Combination DNA Vaccination..221
 8.3.1.3 Mucosal Antibody Response to the Oral Combination DNA Vaccine 226
 8.3.1.4 Protective Efficacy of Five-Gene Combination DNA Vaccination.....227
 8.3.2 Dual Modality Vaccination: Priming with a Five-Gene Combination DNA
 Vaccine and Boosting with an In-House Acellular Vaccine230
 8.3.3 Immunogenicity and Protective Efficacy of the Parenteral Dual Modality
 Vaccine in Mice ...230
 8.3.3.1 Cytokine Production Induced by the Parenteral Dual Modality
 Vaccine ..230
 8.3.3.2 Serum Antibody Response to the Parenteral Dual Modality Vaccine..233
 8.3.3.3 Mucosal Antibody Response to the Parenteral Dual Modality Vaccine236
 8.3.3.4 Clearance of SLID following Immunisation with the Parenteral Dual
 Modality Vaccine ..238
 8.3.4 Immunogenicity and Protective Efficacy of the Oral Dual Modality
 Vaccine in Mice ...240
 8.3.4.1 Cytokine Production in Response to the Oral Dual Modality Vaccine 240
 8.3.4.2 Serum Antibody Response to the Oral Dual Modality Vaccine 242
 8.3.4.3 Mucosal Antibody Response to the Oral Dual Modality Vaccine.......245
 8.3.4.4 Clearance of SLID following Immunisation with the Oral Dual
 Modality Vaccine ..246
8.4 Discussion ...248

Chapter 9 General Discussion ..260
 9.1 Summary ..260
 9.2 Conclusions ...269
 9.3 Future Directions ...271

References ...277

Appendix A ...312
 A.1 Materials and Suppliers ..312
Table of Contents

A.2 Buffers, Solutions, Media and Markers ... 314

Appendix B ... 325

B.1 Extended Methodology .. 325
 B.1.1 Counting of Mammalian Cells ... 325
 B.1.2 Staining of PAGE Gels .. 325
 B.1.3 ALternative Western Blot Protocol ... 325
 B.1.4 Optimal Lysis Conditions for CHO-K1 Cells ... 326
 B.1.5 Preparation of RbCl/CaCl Competent Cells ... 327
 B.1.6 Preparation of Electrocompotent *S. typhimurium* SL3261 Cells 327
 B.1.7 Concentration and Dialysis of Target Proteins ... 327

B.2 Codon Usage Data.. 328

Appendix C ... 329

C.1 pcDNA3.1D/V5-His-TOPO .. 329
C.2 pTrchis2-TOPO .. 332

Appendix D ... 335

D.1 Chapter 3 .. 335
D.2 Chapter 4 .. 336
D.3 Chapter 5 .. 355
D.4 Chapter 6 .. 362
D.5 Chapter 7 .. 368
D.6 Chapter 8 .. 384
List of Figures

Figure 1.1: Reported incidence of pertussis from 1922 to 1994.. 2
Figure 1.2: Recent increases in the reported cases of pertussis in countries with high
vaccine coverage... 3
Figure 1.3: Model of BvgA/S regulation of vag expression by phenotypic modulation.
.. 14
Figure 2.1: Schedule for Vaccination, Challenge and Sampling of Mice to Study
Immunogenicity and Protective efficacy of DNA Vaccination.. 75
Figure 3.1: Purpose-built aerosol chamber for respiratory challenge of non-immunised
and immunised mice.. ... 90
Figure 3.2: Detection of adenylate cyclase toxin expression in B. pertussis Tohama I..
.. 95
Figure 3.3: Bacterial loads in the lungs after various periods of exposure to B. pertussis
Tohama I aerosols.. 96
Figure 3.4: Reliability and reproducibility of the in-house aerosol challenge model.... 97
Figure 4.1: Important domains and regions of the precursor and mature FHAB antigen.
.. 103
Figure 4.2: Antigenic analysis of mature FHAB with a phage display library 104
Figure 4.3: Map of pcDNA3.1D/phaB1 generated using Vector NTI 107
Figure 4.4: Map of pcDNA3.1D/phaB2 generated using Vector NTI 107
Figure 4.5: Genomic DNA extracted from B. pertussis Tohama I.............................. 110
Figure 4.6: PCR of fhaB1 fragment.. 111
Figure 4.7: pTrcHis2/phaB1 and pcDNA3.1D/phaB1 plasmids....................................... 112
Figure 4.8: PCR of fhaB2 fragment.. 112
Figure 4.9: Isolation of pTrcHis2/phaB2 and pcDNA3.1D/phaB2 plasmids................. 113
Figure 4.10: Western blotting of rFHAB1 expression in TOP10 E. coli....................... 114
Figure 4.11: Western blotting of rFHAB2 expression in E. coli.................................... 115
Figure 4.12: PAGE of affinity purified rFHAB1 from BL21 CodonPlus E. coli........ 116
Figure 4.13: PAGE of affinity purified rFHAB2 from BL21 CodonPlus E. coli........ 116
Figure 4.14: Western blotting of rFHAB1 and rFHAB2 expression in COS-7 cells. 117
Figure 4.15: IFN-γ production from rFHAB1-stimulated splenocytes....................... 118
Figure 4.16: IFN-γ production from rFHAB2-stimulated splenocytes....................... 119
List of Figures

Figure 4.17: IL-2 production from rFHAB1-stimulated splenocytes........................... 120
Figure 4.18: IL-2 production from rFHAB2-stimulated splenocytes........................... 120
Figure 4.19: Endpoint titers of anti-filamentous hemagglutinin IgG in the sera of mice
vaccinated with pcDNA3.1D/haB1. ... 122
Figure 4.20: Endpoint titers of anti-filamentous hemagglutinin IgG in the sera of mice
vaccinated with pcDNA3.1D/haB2. ... 123
Figure 4.21: Clearance of B. pertussis from the lungs of mice vaccinated with
pcDNA3.1D/haB1 following aerosol challenge. .. 124
Figure 4.22: Clearance of B. pertussis from the lungs of mice vaccinated with
pcDNA3.1D/haB2 following aerosol challenge. .. 125
Figure 5.1: Map of pcDNA3.1D/prn generated using Vector NTI. 138
Figure 5.2: PCR of prn gene. .. 140
Figure 5.3: Isolation of pTrcHis2/prn and pcDNA3.1D/prn. ... 141
Figure 5.4: Western blotting of rPRN expression in TOP10 E. coli 142
Figure 5.5: PAGE of affinity purified rPRN from BL21 CodonPlus E. coli 143
Figure 5.6: Expression of rPRN in COS-7 cells. .. 144
Figure 5.7: IFN-γ production from rPRN-stimulated splenocytes. 145
Figure 5.8: IL-2 production from rPRN-stimulated splenocytes. 145
Figure 5.9: Anti-rPRN IgG endpoint titers in sera of mice vaccinated with
pcDNA3.1D/prn. ... 147
Figure 5.10: Anti-rPRN IgG endpoint titers in sera from individual mice vaccinated
with pcDNA3.1/prn. ... 148
Figure 5.11: Bacterial loads in lungs of pcDNA3.1D/prn-vaccinated mice following
aerosol challenge ... 149
Figure 5.12: Recognition of rPRN by immune sera from mice 151
Figure 6.1: Map of pcDNA3.1D/pts1 generated using Vector NTI. 159
Figure 6.2: PCR of pts1 gene. ... 162
Figure 6.3: PCR of pts1 gene. ... 162
Figure 6.4: Isolation of pcDNA3.1D/pts1, pcDNA3.1D/pts1.13L and
pcDNA3.1D/pts1.13L.129G from E. coli and S. typhimurium 163
Figure 6.5: Isolation of pTrcHis2/pts1, pTrcHis2/pts1.13L.19G and
pTrcHis2/pts1.13L.129G from E. coli. .. 164
Figure 6.6: Site-directed mutagenesis PCR of pTrcHis2/pts1. 164
Figure 6.7: PCR of pts1.13L and pts1.13L.129G inserts ... 165
List of Figures

Figure 6.8: Isolation of pcDNA3.1D/pts1.13L and pcDNA3.1D/pts1.13L.129G from XL10-Gold E. coli. ... 165
Figure 6.9: Western Blotting of rPTS1, rPTS1.13L and rPTS1.13L.129G expression in COS-7 cells. ... 166
Figure 6.10: CHO-K1 cell morphology following exposure to rPTS1 and rPTS1.13L and rPTS1.13L.129G antigens... 168
Figure 6.11: Western blotting of rPTS1 and rPTS1.13L/PTS1.13L.129G expression in E. coli. ... 169
Figure 6.12: PAGE of affinity purified rPTS1.13L.129G.. 170
Figure 6.13: IFN-γ production from rPTS1.13L.129G-stimulated splenocytes............. 171
Figure 6.14: IL-2 production from rPTS1.13L.129G-stimulated splenocytes.............. 172
Figure 6.15: Bacterial loads in lungs of pcDNA3.1D/pts1.13L.129G vaccinated mice following aerosol challenge... 175
Figure 7.1: Map of pcDNA3.1D/cyaAL58 generated using Vector NTI.................. 187
Figure 7.2: Map of pcDNA3.1D/cyaC generated using Vector NTI......................... 188
Figure 7.3: PCR of cyaA gene .. 191
Figure 7.4: Isolation of pcDNA3.1D/cyaA and pcDNA3.1D/cyaAL58 from E. coli and S. typhimurium ... 192
Figure 7.5: Isolation of pTrcHis2/cyaA and pTrcHis2/cyaAL58 from E. coli 193
Figure 7.6: PCR of cyaC gene .. 193
Figure 7.7: Isolation of pcDNA3.1D/cyaC and pTrcHis2/cyaC from E. coli and S. typhimurium ... 194
Figure 7.8: Site-directed mutagenesis PCR of pcDNA3.1D/cyaA and pTrcHis2/cyaA. .. 195
Figure 7.9: Western blotting of rCYAA and rCYAAL58 expression in COS-7 cells.. 196
Figure 7.10: Western blotting of rCYAC expression in COS-7 cells......................... 196
Figure 7.11: Cyclic AMP levels in CHO-K1 cells following exposure to rCYAA or rCYAAL58 .. 197
Figure 7.12: CHO-K1 cell morphology following exposure to rCYAA or rCYAAL58. .. 198
Figure 7.13: Western Blotting of rCYAA and rCYAAL58 expression in E. coli 199
Figure 7.14: PAGE of affinity purified rCYAAL58 from E. coli 200
Figure 7.15: Western blotting of rCYAC expression in E. coli................................. 200
Figure 7.16: PAGE of affinity purified rCYAC from E. coli 201
List of Figures

Figure 7.17: IFN-γ production from rCYAAL58-stimulated splenocytes. 202
Figure 7.18: IFN-γ production from rCYAAL58-stimulated splenocytes. 202
Figure 7.19: IL-2 production from rCYAAL58-stimulated splenocytes. 203
Figure 7.20: IL-2 production from rCYAAL58-stimulated splenocytes. 204
Figure 7.21: Anti-adenylate cyclase toxin IgG titers in the sera of mice vaccinated with
pcDNA3.1D/cyaAL58 or pcDNA3.1D/cyaAL58 + pcDNA3.1D/cyaC in combination. ... 205
Figure 7.22: Clearance of *B. pertussis* from the lungs of mice vaccinated with
pcDNA3.1/cyaAL58 or pcDNA3.1/cyaAL58 + pcDNA3.1/cyaC in combination
following aerosol challenge. ... 207
Figure 7.23: Recognition of rCYAAL58 and AC-Hly by sera from mice vaccinated with
pcDNA3.1D/cyaAL58, pcDNA3.1D/cyaAL58 + pcDNA3.1D/cyaC, vector only
and DTaP. .. 209
Figure 8.1: IFN-γ production from *in-vitro* re-stimulated splenocytes following
immunisation with an IM combination DNA vaccine. ... 218
Figure 8.2: IFN-γ production from *in-vitro* re-stimulated splenocytes following
immunisation with an oral combination DNA vaccine. ... 219
Figure 8.3: Endpoint titers of anti-rPRN IgG in sera of mice vaccinated with the
combination DNA vaccines. ... 223
Figure 8.4: Endpoint titers of anti-*S. typhimurium* SL3261 IgG in sera of mice
vaccinated with the oral five-gene combination DNA vaccine. ... 224
Figure 8.5: Clearance of *B. pertussis* challenge from the lungs of mice vaccinated with
the IM five-gene combination DNA vaccine. ... 227
Figure 8.6: Clearance of *B. pertussis* challenge from the lungs of mice vaccinated with
the oral five-gene combination DNA vaccine. ... 228
Figure 8.7: IFN-γ production from *in-vitro* re-stimulated splenocytes following
immunisation with the parenteral dual modality vaccine. .. 231
Figure 8.8: IL-2 production from *in-vitro* re-stimulated splenocytes following
immunisation with a parenteral dual modality vaccine. ... 232
Figure 8.9: Endpoint titers of anti-rFHAB1 and anti-FHA IgG in sera of mice
immunised with the parenteral dual modality vaccine. .. 234
Figure 8.10: Endpoint titers of anti-rPRN IgG in sera of mice immunised with the
parenteral dual modality vaccine. ... 234
List of Figures

Figure 8.11: Endpoint titers of anti-pertussis toxin IgG in the sera of mice immunised with the parenteral dual modality vaccine. .. 235
Figure 8.12: Anti-filamentous hemagglutinin IgG in the BAL fluid of mice immunised with the parenteral dual modality vaccine. .. 237
Figure 8.13: Anti-rPRN IgG in the BAL fluid of mice vaccinated with the parenteral dual modality vaccine. .. 237
Figure 8.14: Clearance of *B. pertussis* challenge from the lungs of mice immunised with the parenteral dual modality vaccine. .. 239
Figure 8.15: IFN-γ production from *in-vitro* re-stimulated splenocytes following immunisation with the oral dual modality vaccine .. 240
Figure 8.16: Endpoint titers of anti-rPRN IgG in sera of mice immunised with the oral dual modality vaccine. .. 243
Figure 8.17: Endpoint titers of anti-pertussis toxin IgG in the sera of mice immunised with the oral dual modality vaccine. .. 244
Figure 8.18: Clearance of *B. pertussis* challenge from the lungs of mice vaccinated with the oral dual modality vaccine. .. 247
List of Tables

Table 2.1: Bacterial strains used in this study. ... 45
Table 2.2: Plasmids used and constructed in this study... 50
Table 2.3: Oligonucleotides used in this study. .. 52
Table 2.4: Optimum cycling conditions for amplification of fhaB... 57
Table 2.5: Optimum cycling conditions for amplification of prn.. 57
Table 2.6: Optimum cycling conditions for amplification of ptxSl. 58
Table 2.7: Optimum cycling conditions for amplification of cyaA. 58
Table 2.8: Optimum cycling conditions for amplification of cyaC. 59
Table 2.9: Optimum cycling conditions for site-directed mutagenesis of ptxSl insert. ... 63
Table 2.10: Optimum cycling conditions for site-directed mutagenesis of cyaA insert. 63
Table 2.11: Outline of transfection component of cAMP assay. .. 72
Table 2.12: Outline of first DNA vaccine trial. ... 77
Table 2.13: Outline of second DNA vaccine trial. .. 81
Table 2.14: Stimulants used for each pooled splenocyte population. 85
Table 3.1: Protocol for passage of *B. pertussis* Tohama I for use in challenge experiments. ... 92
Table 3.2: Determination of SLID of *B. pertussis* Tohama I aerosol challenge......... 94
Table 4.1: IL-4 production from rFHAB1 and rFHAB2-stimulated splenocytes. 121
Table 4.2: Post-challenge clearance data from mice vaccinated with pcDNA3.1D/fhaB1 and pcDNA3.1D/fhaB2. ... 126
Table 5.1: IL-4 production from rPRN-stimulated splenocytes. .. 146
Table 5.2: Serum IgG1 and IgG2a in mice vaccinated with pcDNA3.1D/prn. 147
Table 5.3: Post-challenge clearance data from mice immunised with pcDNA3.1D/prn. .. 150
Table 6.1: IL-4 production from rPTS1.13L.129G-stimulated splenocytes. 172
Table 6.2: Anti-Pertussis toxin IgG endpoint titers in sera of mice vaccinated with pcDNA3.1D/pts1.13L.129G. .. 173
Table 6.3: Serum IgG1 and IgG2a titers of mice vaccinated with pcDNA3.1D/pts1.13L.129G. ... 173
Table 6.4: Post-challenge clearance data from mice immunised with pcDNA3.1D/pts1.13L.129G. .. 175
Table 7.1: IL-4 production from in-vitro re-stimulated splenocytes following vaccination of mice with pcDNA3.1D/cyaAL58 with or without co-administration of pcDNA3.1D/cyaC. ... 204
Table 7.2: Serum IgG1 and IgG2a in mice vaccinated with pcDNA3.1D/cyaAL58 with or without pcDNA3.1D/cyaC. ... 206
Table 7.3: Post-challenge clearance data from mice immunised with pcDNA3.1D/cyaAL58 and pcDNA3.1D/cyaAL58 + pcDNA3.1D/cyaC in combination. ... 208
Table 8.1: IL-2 production from in-vitro re-stimulated splenocytes following immunisation with the IM or oral five-gene combination DNA vaccine. 220
Table 8.2: IL-4 production from in-vitro re-stimulated splenocytes following immunisation with the IM or oral five-gene combination DNA vaccine. 220
Table 8.3: Endpoint titers of anti-filamentous hemagglutinin IgG in sera of mice immunised with the five-gene combination DNA vaccines. ... 222
Table 8.4: Endpoint titers of anti-pertussis toxin IgG in sera of mice vaccinated with five-gene combination DNA vaccines... 222
Table 8.5: Endpoint titers of anti-adenylate cyclase toxin IgG in sera of mice vaccinated with five-gene combination DNA vaccines.. 223
Table 8.6: Serum IgG1 and IgG2a titers in mice vaccinated with an oral five-gene combination DNA vaccine... 225
Table 8.7: Serum IgG1 and IgG2a titers in mice vaccinated with an IM five-gene combination DNA vaccine... 225
Table 8.8: Antigen-specific IgG in BAL fluid of mice immunised with the oral five-gene combination DNA vaccine... 226
Table 8.9: Antigen-specific IgG in BAL fluid of mice immunised with the oral five-gene combination DNA vaccine... 226
Table 8.10: Post-challenge clearance data from mice immunised with the IM combination DNA vaccine... 229
Table 8.11: Post-challenge clearance data from mice immunised with the oral combination DNA vaccine... 229
Table 8.12: IL-4 production from in-vitro re-stimulated splenocytes following immunisation with the parenteral dual modality vaccine. 233
Table 8.13: Serum IgG1 and IgG2a titers in mice vaccinated with dual modality vaccines... 236
List of Tables

Table 8.14: Anti-pertussis toxin IgG in the BAL fluid of mice vaccinated with the parenteral dual modality vaccine. ... 238
Table 8.15: Post-challenge clearance data from mice immunised with the parenteral dual modality vaccine. ... 239
Table 8.16: IL-2 production from in-vitro re-stimulated splenocytes following immunisation with the oral dual modality vaccine. 241
Table 8.17: IL-4 production from in-vitro re-stimulated splenocytes following immunisation with the oral dual modality vaccine. 242
Table 8.18: Endpoint titers of anti-rFHAB1 and anti-FHA IgG in sera of mice immunised with the oral dual modality vaccine. 243
Table 8.19: Endpoint titers of anti-adenylate cyclase toxin and anti-S. typhimurium SL3261 IgG in sera of mice immunised with the oral dual modality vaccine. 244
Table 8.20: Serum IgG1 and IgG2a titers in mice vaccinated with the oral dual modality vaccine. ... 245
Table 8.21: Antigen-specific IgG in BAL fluid of mice immunised with the oral dual modality vaccine. ... 246
Table 8.22: Anti-rCYAAL58 and anti-S. typhimurium SL3261 IgG in the BAL fluid of mice immunised with the oral dual modality vaccine. 246
Table 8.23: Post-challenge clearance data from mice immunised with the oral dual modality vaccine. ... 248
List of Abbreviations

AC adenylate cyclase
AC-Hly adenylate cyclase-hemolysin
ACT adenylate cyclase toxin
ADP adenosine diphosphate
ADRAc Australian Adverse Drug Reaction Assessment Committee
AGRf Australian Genome Research Facility
ANGIS Australian National Genome Information Service
AP alkaline phosphatase
APC antigen presenting cell
ATP adenosine triphosphate
BAL bronchoalveolar lavage
BG Bordet Gengou media
BSA bovine serum albumin
bp base pair
cAMP cyclic adenosine monophosphate
CD cluster of differentiation
cDMEM complete Dulbecco’s Modified Eagle Media
CFU colony forming units
CHO Chinese Hamster Ovary cell line
CI clearance index
CMI cell-mediated immunity
CMV cytomegalovirus
CNS central nervous system
ConA concanavalin A
CpG cytosine-phosphate-guanosine
DC dendritic cell
DMEM Dulbecco’s Modified Eagle Media
DMSO dimethyl sulfoxide
DNA deoxyribonucleic acid
DNase deoxyribonuclease
DNT dermonecrotic toxin
List of Abbreviations

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>dNTP</td>
<td>deoxynucleotide triphosphate</td>
</tr>
<tr>
<td>DTaP</td>
<td>Diptheria-Tetanus-acellular Pertussis vaccine</td>
</tr>
<tr>
<td>DTP</td>
<td>Diptheria-Tetanus-whole cell Pertussis vaccine</td>
</tr>
<tr>
<td>DTT</td>
<td>dithiothreitol</td>
</tr>
<tr>
<td>EDAC</td>
<td>1-ethyl-3(3-dimethylaminopropyl) carbodiimide</td>
</tr>
<tr>
<td>EDTA</td>
<td>ethylenediamine tetraacetic acid</td>
</tr>
<tr>
<td>EGTA</td>
<td>ethylene glycol bis(2-aminoethyl ether)-N,N,N',N'-tetraacetic acid</td>
</tr>
<tr>
<td>EIA</td>
<td>enzyme immunoassay</td>
</tr>
<tr>
<td>ELISA</td>
<td>enzyme-linked immunosorbent assay</td>
</tr>
<tr>
<td>FAE</td>
<td>follicle-associated epithelium</td>
</tr>
<tr>
<td>FBS</td>
<td>fetal bovine serum</td>
</tr>
<tr>
<td>FcR</td>
<td>receptor for the Fc portion of immunoglobulin</td>
</tr>
<tr>
<td>FFST</td>
<td>formalin-fixed Salmonella typhimurium</td>
</tr>
<tr>
<td>FHA</td>
<td>filamentous hemagglutinin</td>
</tr>
<tr>
<td>FIM</td>
<td>fimbriae</td>
</tr>
<tr>
<td>GALT</td>
<td>gut-associated lymphoid tissue</td>
</tr>
<tr>
<td>GFP</td>
<td>green fluorescent protein</td>
</tr>
<tr>
<td>GKO</td>
<td>gene knock-out</td>
</tr>
<tr>
<td>GSK</td>
<td>GlaxoSmithKline</td>
</tr>
<tr>
<td>HCl</td>
<td>hydrochloric acid</td>
</tr>
<tr>
<td>His</td>
<td>histidine</td>
</tr>
<tr>
<td>HKBP</td>
<td>heat-killed Bordetella pertussis</td>
</tr>
<tr>
<td>HRP</td>
<td>horse-radish peroxidase</td>
</tr>
<tr>
<td>IFN-γ</td>
<td>interferon-gamma</td>
</tr>
<tr>
<td>IC</td>
<td>intracerebral</td>
</tr>
<tr>
<td>IL</td>
<td>interleukin</td>
</tr>
<tr>
<td>IM</td>
<td>intramuscular</td>
</tr>
<tr>
<td>IN</td>
<td>intranasal</td>
</tr>
<tr>
<td>IP</td>
<td>intraperitoneal</td>
</tr>
<tr>
<td>IPTG</td>
<td>isopropyl β-D-thiogalactoside</td>
</tr>
<tr>
<td>IV</td>
<td>intravenous</td>
</tr>
<tr>
<td>kb</td>
<td>kilobase pair</td>
</tr>
<tr>
<td>kDa</td>
<td>kilo dalton</td>
</tr>
<tr>
<td>KO</td>
<td>knock-out</td>
</tr>
</tbody>
</table>
List of Abbreviations

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>LB</td>
<td>Luria-Betani media</td>
</tr>
<tr>
<td>LBA</td>
<td>Luria-Betani media with ampicillin</td>
</tr>
<tr>
<td>LBAC</td>
<td>Luria-Betani media with ampicillin & chloramphenicol</td>
</tr>
<tr>
<td>LBAG</td>
<td>Luria-Betani media with ampicillin & glucose</td>
</tr>
<tr>
<td>LD<sub>50</sub></td>
<td>lethal dose which causes 50% death of a group of test animals</td>
</tr>
<tr>
<td>LF2000</td>
<td>lipofectamine 2000 reagent</td>
</tr>
<tr>
<td>LN</td>
<td>lymph nodes</td>
</tr>
<tr>
<td>LPS</td>
<td>lipopolysaccharide</td>
</tr>
<tr>
<td>LRT</td>
<td>lower respiratory tract</td>
</tr>
<tr>
<td>LRTI</td>
<td>lower respiratory tract infection</td>
</tr>
<tr>
<td>MALT</td>
<td>mucosal-associated lymphoid tissue</td>
</tr>
<tr>
<td>MHC</td>
<td>major histocompatibility complex</td>
</tr>
<tr>
<td>min</td>
<td>minute</td>
</tr>
<tr>
<td>MgSO<sub>4</sub></td>
<td>magnesium sulphate</td>
</tr>
<tr>
<td>MgCl<sub>2</sub></td>
<td>magnesium chloride</td>
</tr>
<tr>
<td>MSS</td>
<td>modified Stainer-Scholte media</td>
</tr>
<tr>
<td>MV</td>
<td>modified Verwey media</td>
</tr>
<tr>
<td>NALT</td>
<td>nasal-associated lymphoid tissue</td>
</tr>
<tr>
<td>NCBI</td>
<td>National Centre for Biotechnology Information</td>
</tr>
<tr>
<td>NK</td>
<td>natural killer cells</td>
</tr>
<tr>
<td>OD</td>
<td>optical density</td>
</tr>
<tr>
<td>O/N</td>
<td>overnight</td>
</tr>
<tr>
<td>OPD</td>
<td>o-phenylene diamine</td>
</tr>
<tr>
<td>ORF</td>
<td>open reading frame</td>
</tr>
<tr>
<td>P69</td>
<td>69 kDa outer membrane protein of B. pertussis</td>
</tr>
<tr>
<td>Pa</td>
<td>acellular pertussis vaccine</td>
</tr>
<tr>
<td>PAGE</td>
<td>polyacrylamide gel electrophoresis</td>
</tr>
<tr>
<td>PBS</td>
<td>phosphate-buffered saline</td>
</tr>
<tr>
<td>PBST</td>
<td>phosphate-buffered saline with Tween-20</td>
</tr>
<tr>
<td>PCR</td>
<td>polymerase chain reaction</td>
</tr>
<tr>
<td>PMNL</td>
<td>polymorphonuclear leukocytes</td>
</tr>
<tr>
<td>PMSF</td>
<td>phenylmethylsulfonyl fluoride</td>
</tr>
<tr>
<td>PP</td>
<td>Peyer’s patches</td>
</tr>
<tr>
<td>PRN</td>
<td>pertactin</td>
</tr>
</tbody>
</table>

xxvii
List of Abbreviations

PT pertussis toxin
PVDF polyvinylidene fluoride
Pw whole-cell pertussis vaccine
RNA ribonucleic acid
RNase ribonuclease
rpm revolutions per minute
RT room temperature
S1 S1 subunit of pertussis toxin
SC subcutaneous
SDS sodium dodecyl sulfate
sec second
SLID sub-lethal infectious dose
SS Stainer-Scholte media
TAE tris acetate EDTA
TB terrific broth
Tc CD8+ cytotoxic T lymphocyte
TcR T-cell receptor
TCT tracheal cytotoxin
TGF-β tumour growth factor-beta
TNF tumour necrosis factor
Tween-20 polyoxyethylenesorbitan monolaurate
URT upper respiratory tract
URTI upper respiratory tract infection
USQ University of Southern Queensland
vag virulence-associated gene
vir virulence
vrg virulence-repressed gene
VLP virus-like protein
WCV whole-cell pertussis vaccine
WHO World Health Organisation
wt wild-type
X-Gal 5-bromo-4-chloro-3-indolyl-b-D-galactoside