Amplitude modulation in δ Sct stars: statistics from an ensemble study of Kepler targets

Bowman, Dominic M. and Kurtz, Donald W. and Breger, Michel and Murphy, Simon J. and Holdsworth, Daniel L. (2016) Amplitude modulation in δ Sct stars: statistics from an ensemble study of Kepler targets. Monthly Notices of the Royal Astronomical Society, 460 (2). pp. 1970-1989. ISSN 0035-8711

[img]
Preview
Text (Published Version)
stw1153.pdf

Download (6MB) | Preview

Abstract

We present the results of a search for amplitude modulation of pulsation modes in 983 δ Sct stars, which have effective temperatures between 6400 ≤ Teff ≤ 10 000 K in the Kepler Input Catalogue and were continuously observed by the KeplerSpace Telescope for 4 yr. We demonstrate the diversity in pulsational behaviour observed, in particular non-linearity, which is predicted for δ Sct stars. We analyse and discuss examples of δ Sct stars with constant amplitudes and phases; those that exhibit amplitude modulation caused by beating of close-frequency pulsation modes; those that exhibit pure amplitude modulation (with no associated phase variation); those that exhibit phase modulation caused by binarity; and those that exhibit amplitude modulation caused by non-linearity. Using models and examples of individual stars, we demonstrate that observations of the changes in amplitude and phase of pulsation modes can be used to distinguish among the different scenarios. We find that 603 δ Sct stars (61.3 per cent) exhibit at least one pulsation mode that varies significantly in amplitude over 4 yr. Conversely, many δ Sct stars have constant pulsation amplitudes so short-length observations can be used to determine precise frequencies, amplitudes and phases for the most coherent and periodic δ Sct stars. It is shown that amplitude modulation is not restricted to a small region on the HR diagram, therefore not necessarily dependent on stellar parameters such as Teff or log  g. Our catalogue of 983 δ Sct stars will be useful for comparisons to similar stars observed by K2 and TESS, because the length of the 4-yr Kepler data set will not be surpassed for some time.


Statistics for USQ ePrint 47867
Statistics for this ePrint Item
Item Type: Article (Commonwealth Reporting Category C)
Refereed: Yes
Item Status: Live Archive
Additional Information: File reproduced in accordance with the copyright policy of the publisher/author.
Faculty/School / Institute/Centre: No Faculty
Faculty/School / Institute/Centre: No Faculty
Date Deposited: 27 Apr 2022 04:58
Last Modified: 16 May 2022 01:05
Uncontrolled Keywords: Asteroseismology; Stars: oscillations; Stars: variables: δ Scuti; Astrophysics - Solar and Stellar Astrophysics
Fields of Research (2020): 51 PHYSICAL SCIENCES > 5101 Astronomical sciences > 510109 Stellar astronomy and planetary systems
Socio-Economic Objectives (2020): 28 EXPANDING KNOWLEDGE > 2801 Expanding knowledge > 280120 Expanding knowledge in the physical sciences
Identification Number or DOI: https://doi.org/10.1093/mnras/stw1153
URI: http://eprints.usq.edu.au/id/eprint/47867

Actions (login required)

View Item Archive Repository Staff Only