One-step and green synthesis of a bio-based high-efficiency flame retardant for poly (lactic acid)

Ye, Guofeng and Huo, Siqi and Wang, Cheng and Shi, Qiu and Liu, Zhitian and Wang, Hao (2021) One-step and green synthesis of a bio-based high-efficiency flame retardant for poly (lactic acid). Polymer Degradation and Stability, 192:109696. pp. 1-9. ISSN 0141-3910


Abstract

The synthesis of bio-based high-efficiency flame retardants in accordance with green and facile method is critical yet very challenging for bioplastics, e.g., poly (lactic acid) (PLA). In this study, a bio-based flame retardant named as PF is synthesized by the reaction between phytic acid (PA) and furfurylamine (FA) in water. PF improves the flame retardancy of PLA at low addition. For instance, PLA composite containing only 2 wt% PF passes a UL-94 V-0 classification, and that containing 4 wt% PF exhibits a limiting oxygen index (LOI) of 28.5%, which is 46.2% higher than that of pure PLA. PF slightly reduces the peak heat release rate (PHRR) and total heat release (THR) of PLA in cone calorimeter test (CCT). In detail, 4 wt% PF reduces the PHRR from 362.2 kW/m2 to 332.7 kW/m2 by 8%. Additionally, PLA/PF composite is comparable to the neat PLA in terms of mechanical properties and thermal stability when a UL-94 V-0 rating is achieved. The flame-retardant mechanism analyses demonstrate that PF takes action in both gaseous and condensed phases. It is proposed that PF accelerates the generation of melting droplets to take away heat, suppresses the release of combustible gases and improves the compactness of char layer during combustion. This study provides a green and facile strategy to create bio-based high-efficiency flame retardants for the preparation of fire-safe bioplastics holding a promising future in the industry.


Statistics for USQ ePrint 46458
Statistics for this ePrint Item
Item Type: Article (Commonwealth Reporting Category C)
Refereed: Yes
Item Status: Live Archive
Faculty/School / Institute/Centre: Current - Institute for Advanced Engineering and Space Sciences - Centre for Future Materials (1 Jan 2017 -)
Faculty/School / Institute/Centre: Current - Institute for Advanced Engineering and Space Sciences - Centre for Future Materials (1 Jan 2017 -)
Date Deposited: 08 Mar 2022 01:35
Last Modified: 30 Mar 2022 05:16
Uncontrolled Keywords: Bio-based flame retardant; Flame retardancy; Flame-retardant mechanism; Poly(lactic acid); Thermal stability
Fields of Research (2008): 09 Engineering > 0912 Materials Engineering > 091202 Composite and Hybrid Materials
Fields of Research (2020): 40 ENGINEERING > 4016 Materials engineering > 401602 Composite and hybrid materials
Socio-Economic Objectives (2008): E Expanding Knowledge > 97 Expanding Knowledge > 970109 Expanding Knowledge in Engineering
Socio-Economic Objectives (2020): 28 EXPANDING KNOWLEDGE > 2801 Expanding knowledge > 280110 Expanding knowledge in engineering
Identification Number or DOI: https://doi.org/10.1016/j.polymdegradstab.2021.109696
URI: http://eprints.usq.edu.au/id/eprint/46458

Actions (login required)

View Item Archive Repository Staff Only