Highly active CeO2 hollow-shell spheres with Al doping

Wang, Zumin and Jiang, Shuaiyu and Li, Yanhui and Xu, Pengfei and Zhao, Kun and Zong, Lingbo and Wang, Hao and Yu, Ranbo (2017) Highly active CeO2 hollow-shell spheres with Al doping. Science China. Materials, 60 (7). pp. 646-653. ISSN 2095-8226


Abstract

Metal oxide hollow structures are of great interest in many current and emerging areas of technology. This paper presents a facile and controlled protocol for the synthesis of Al-doped CeO2 hollow-shell spheres (CHS), where the dopant confers enhanced stability and activity to the material. These Al-doped CeO2 hollow-shell spheres (ACHS) possess a controllable shell number of up to three, where the sizes of the exterior, middle, and interior spheres were about 250‒100 nm,150‒50 nm, and 40‒10 nm, respectively, and the average shell thickness was ~15 nm. The thermal stability of the ACHS structure was enhanced by the homogeneous incorporation of Al atoms, and more active oxygen species were present compared with those in the non-doped congener. Au NPs supported on ACHS (Au/ACHS) showed superior catalytic performance for the reduction of p-nitrophenol. For the same Au NP content, the reaction rate constant (k) of the Au/ACHS was nearly twice that of the non-doped Au/CHS, indicating that Al doping is promising for improving the performance of inert or unstable oxides as catalyst supports.


Statistics for USQ ePrint 46433
Statistics for this ePrint Item
Item Type: Article (Commonwealth Reporting Category C)
Refereed: Yes
Item Status: Live Archive
Faculty/School / Institute/Centre: Current - Institute for Advanced Engineering and Space Sciences - Centre for Future Materials (1 Jan 2017 -)
Faculty/School / Institute/Centre: Current - Institute for Advanced Engineering and Space Sciences - Centre for Future Materials (1 Jan 2017 -)
Date Deposited: 03 Mar 2022 03:27
Last Modified: 26 Apr 2022 23:54
Uncontrolled Keywords: catalyst; CeO2 ; doping; hollow structure
Fields of Research (2008): 09 Engineering > 0912 Materials Engineering > 091205 Functional Materials
Fields of Research (2020): 40 ENGINEERING > 4016 Materials engineering > 401605 Functional materials
Socio-Economic Objectives (2008): E Expanding Knowledge > 97 Expanding Knowledge > 970109 Expanding Knowledge in Engineering
Socio-Economic Objectives (2020): 28 EXPANDING KNOWLEDGE > 2801 Expanding knowledge > 280110 Expanding knowledge in engineering
Identification Number or DOI: https://doi.org/10.1007/s40843-017-9042-0
URI: http://eprints.usq.edu.au/id/eprint/46433

Actions (login required)

View Item Archive Repository Staff Only