Impact Properties of the Chemically Treated Hemp Fibre Reinforced Polyester Composites

Kabir, Mohammad Mazedul and Al-Haik, Mohammad Yousef and Aldajah, Saud Hamad and Lau, Kin Tak and Wang, Hao (2020) Impact Properties of the Chemically Treated Hemp Fibre Reinforced Polyester Composites. Fibers and Polymers, 21 (9). pp. 2098-2110. ISSN 1229-9197


Abstract

Plant based hemp fibre properties were found to be highly influenced by changes in the amounts of cellulose, hemicellulose and lignin constituents within the fibre. These fibre constituents play a major role for effective interfacial adhesion between the fibre and the matrix. Chemical treatments such as alkali (NaOH), acetyl (acetic acid & acetic anhydride) and silane (siloxane) treatments have the potential to react with constituent contents by varying their amounts. In this study, hemp fibre was treated with alkali (0–10 % NaOH), acetyl and silane chemicals. Treated fibres were mixed with polyester matrix to produce composites. The effects of chemical treatments on hemp fibres and the resulted polyester matrix composite were analysed through impact testing of the composite samples. Alkali treatments on hemp fibres enhanced the impact resistance properties (around 43 % lower absorbed energy and 40 % higher rebounded energy) of its composites compared to the untreated cases. Lower absorption energy and higher rebounded energy indicates strong interfacial bonding between the fibre and matrix. Improvements are governed by the removal of hemicellulose and lignin from the fibre, which provides a platform for better chemical reactions between fibres and matrix. On the other hand, acetyl treatments on the higher concentrations of NaOH pre-treated fibres reduced the fibres’ ability to support impact loadings (22 % higher rebounded energy compared to the untreated cases). In the two treatment conditions, fibre lessen their strength due to excessive removal of hemicellulose and lignin constituents, and composites exhibited lower impact properties compared to the NaOH treated samples. Similar impact properties were also recorded for alkali pre-treated silanised composites. As alkali pre-treatment removed the hydroxyl groups from the fibre, further silane treatment could not develop silanols to create strong interface bonding. As a result, composites failed under lower impact resistance compared to the NaOH treated samples.


Statistics for USQ ePrint 46328
Statistics for this ePrint Item
Item Type: Article (Commonwealth Reporting Category C)
Refereed: No
Item Status: Live Archive
Faculty/School / Institute/Centre: Current - Institute for Advanced Engineering and Space Sciences - Centre for Future Materials (1 Jan 2017 -)
Faculty/School / Institute/Centre: Current - Institute for Advanced Engineering and Space Sciences - Centre for Future Materials (1 Jan 2017 -)
Date Deposited: 07 Mar 2022 01:37
Last Modified: 13 Apr 2022 00:50
Uncontrolled Keywords: Chemical treatment; Composite material; Hemp fibre; Impact energy; Impact properties
Fields of Research (2008): 09 Engineering > 0912 Materials Engineering > 091202 Composite and Hybrid Materials
Fields of Research (2020): 40 ENGINEERING > 4016 Materials engineering > 401602 Composite and hybrid materials
Socio-Economic Objectives (2008): E Expanding Knowledge > 97 Expanding Knowledge > 970109 Expanding Knowledge in Engineering
Socio-Economic Objectives (2020): 28 EXPANDING KNOWLEDGE > 2801 Expanding knowledge > 280110 Expanding knowledge in engineering
Identification Number or DOI: https://doi.org/10.1007/s12221-020-9630-4
URI: http://eprints.usq.edu.au/id/eprint/46328

Actions (login required)

View Item Archive Repository Staff Only