Stretchable strain sensors with dentate groove structure for enhanced sensing recoverability

Cui, Xihua and Jiang, Yue and Xu, Zhiguang and Xi, Man and Jiang, Yang and Song, Pingan ORCID: https://orcid.org/0000-0003-1082-652X and Zhao, Yan and Wang, Hao (2021) Stretchable strain sensors with dentate groove structure for enhanced sensing recoverability. Composites Part B: Engineering, 211:108641. pp. 1-10. ISSN 1359-8368


Abstract

Stretchable strain sensors based on conductive polymer composites commonly utilize elastic polymers as the matrix. However, elastic polymers always show strong mechanical hysteresis effect leading to shoulder peak phenomenon and thereby poor recoverability of strain sensors. Herein, we design a stretchable rough filament strain sensor with dentate groove structure to eliminate the shoulder peak phenomenon and improve recoverability. The filament strain sensor is fabricated by the extrusion of poly(styrene-b-ethylene-b-butylene-b-styrene) (SEBS) filament constructing dentate groove structure and the subsequent ultrasonic treatment decorating carbon nanotubes (CNTs) on the surface of the SEBS filament. It is interesting to find that the strain sensing range of rough SEBS/CNTs filaments with dentate groove structure is wider than that of smooth filaments. More importantly, the rough filament strain sensors exhibit significantly enhanced recoverability without shoulder peak during the releasing process while the rough dentate groove structure has minor effects on the mechanical properties of SEBS filaments. The great improvement is ascribed to the uniform distribution of deformation because of the dentate groove structure, which induces reduction of the mechanical hysteresis effect and thereby decreases residual strain. Moreover, the rough filament strain sensors have a favorable integration of good stability, fast response time of 300 ms (0.5% strain is applied with a high strain rate of 500 mm/min) and excellent durability (1976 cycles at the strain of 50%). The rough filament strain sensors can accurately and stably monitor both large and subtle human motions (such as body motion, expression and phonation), showing broad application prospects in wearable devices.


Statistics for USQ ePrint 44052
Statistics for this ePrint Item
Item Type: Article (Commonwealth Reporting Category C)
Refereed: Yes
Item Status: Live Archive
Faculty/School / Institute/Centre: Current - Institute for Advanced Engineering and Space Sciences - Centre for Future Materials (1 Jan 2017 -)
Faculty/School / Institute/Centre: Current - Institute for Advanced Engineering and Space Sciences - Centre for Future Materials (1 Jan 2017 -)
Date Deposited: 29 Nov 2021 01:06
Last Modified: 01 Dec 2021 01:59
Uncontrolled Keywords: Strain sensors; Elastic polymers; Dentate groove structure; Shoulder peak; Sensing recoverability
Fields of Research (2008): 09 Engineering > 0912 Materials Engineering > 091202 Composite and Hybrid Materials
09 Engineering > 0912 Materials Engineering > 091209 Polymers and Plastics
09 Engineering > 0912 Materials Engineering > 091205 Functional Materials
Fields of Research (2020): 40 ENGINEERING > 4016 Materials engineering > 401605 Functional materials
40 ENGINEERING > 4016 Materials engineering > 401609 Polymers and plastics
40 ENGINEERING > 4016 Materials engineering > 401602 Composite and hybrid materials
Socio-Economic Objectives (2008): E Expanding Knowledge > 97 Expanding Knowledge > 970109 Expanding Knowledge in Engineering
Socio-Economic Objectives (2020): 28 EXPANDING KNOWLEDGE > 2801 Expanding knowledge > 280105 Expanding knowledge in the chemical sciences
28 EXPANDING KNOWLEDGE > 2801 Expanding knowledge > 280110 Expanding knowledge in engineering
Identification Number or DOI: https://doi.org/10.1016/j.compositesb.2021.108641
URI: http://eprints.usq.edu.au/id/eprint/44052

Actions (login required)

View Item Archive Repository Staff Only