Computer algebra derives discretisations via self-adjoint multiscale modelling

A. J. Roberts

July 17, 2008

Abstract

The computer algebra routines documented here empower you to reproduce and check details described in a partner article [14]. We consider a region of a spatial domain far from any boundaries, and derive a discrete model for the dynamics on the slow manifold on a coarse scale lattice. The approach automatically accounts for fine-grid scale interactions within and between coarse-grid elements to form a systematic approximation of the accurate closure on the coarse grid. You may straightforwardly adapt these routines to model many similar multiscale dynamical systems.

Contents

1 Introduction 2

2 Self-adjoint holistic modelling of diffusion 4
 2.1 Preamble .. 5
 2.2 Initialise ... 6

*Department of Mathematics & Computing, University of Southern Queensland, Toowoomba, Queensland 4352, Australia. mailto:aroberts@usq.edu.au

1The computer algebra routines are written in the package REDUCE. At the time of writing, information about REDUCE was available via http://www.reduce-algebra.com/. Free demonstration versions of REDUCE were available and will execute these routines.
1 Introduction

Holistic discretisation uses centre manifold theory to rationally model on a coarse scale the multiscale dynamics that arise in spatio-temporal continuum dynamics [12, 10, 16, e.g.] or that arise on a multigrid hierarchy.
of lattices [15]. However, previous approaches do not necessarily preserve, at each stage of approximation, the self-adjoint symmetries of the underlying microscale system. Here we develop computer algebra to implement interelement coupling conditions that do preserve self-adjointness. These new coupling conditions then empower us to model and connect self-adjoint models across wide ranges of space-time scales.

For the first of two examples, building upon the routine for modelling linear continuum diffusion in Section 2, the computer algebra of Section 3 recommends the following self-adjoint discrete model of the example nonlinear continuum diffusion

\[
\frac{\partial u}{\partial t} = \frac{\partial}{\partial x} \left[u \frac{\partial u}{\partial x} \right] \mapsto \frac{dU_j}{dt} = \frac{1}{2h^2} \left(U_{j+1}^2 - 2U_j^2 + U_{j+1}^2 \right). \tag{1}
\]

As a second example, building upon the routine for modelling linear discrete diffusion in Section 4, the homogenisation of Section 6 commends the following self-adjoint coarser grid lattice model of the fine grid lattice dynamics

\[
\frac{du_i}{dt} = \kappa_{i-1/2}u_{i-1} - (\kappa_{i-1/2} + \kappa_{i+1/2})u_i + \kappa_{i+1/2}u_{i+1} \mapsto \frac{dU_j}{dt} = \frac{1}{4} \left[K_j u_{j-2} - (K_j + K_{j+1})u_j + K_{j+1}u_{j+2} \right], \tag{2}
\]

where the coarser scale diffusivity \(K_j \approx \frac{1}{4}(\kappa_{2j-2} + \kappa_{2j-1} + \kappa_{2j+1} + \kappa_{2j+2}) \) is an average over the local fine grid diffusivities. Such transformations from fine lattice dynamics to coarser lattice dynamics may be iterated to cover step-by-step the wide range of space-time scales on a multigrid hierarchy.

The above transformations only show nearest neighbour interactions. The use of centre manifold theory empowers us to systematically incorporate interactions in the dynamics over wider stencils in space. As in earlier work, we use the parameter \(\gamma \) to control such interactions.

Although the specific computer algebra routines coded here are for specific microscale dynamics, straightforward modifications allow one to model a wide range of microscale dynamics. For two other examples: Section 5 builds upon the modelling of linear discrete diffusion in Section 4 to model nonlinear reaction-diffusion lattice dynamics; similarly Section 7 uses the same basis to develop the envelope equation for the modulation of nonlinear zigzag modes on a lattice.
Throughout we only address deterministic dynamics in one spatial dimension. Analogous approaches for stochastic dynamics [13, e.g.] or higher dimensions in space [9, e.g.] is left for further research.

2 Self-adjoint holistic modelling of diffusion

The simplest macroscale modelling in continuum mechanics is the discretisation of linear diffusion as governed by the PDE

$$\frac{\partial u}{\partial t} = \frac{\partial^2 u}{\partial x^2}. \quad (3)$$

As described in the companion article [14, §2], embed the spatio-temporal dynamics into dynamics on overlapping spatial elements: let $u_j(x,t)$ denote the field in the jth element.

The following computer algebra readily constructs approximations to the slow manifold of the evolution of the grid values. Let the coarse scale grid be uniform, $\Delta X_j = h$, and define the grid values $U_j(t) = u_j(X_j,t)$. Computer algebra finds the subgrid, intraelement field is

$$u_j = [1 + \gamma(\xi \mu \delta + \frac{1}{2} |\xi| \delta^2) + \gamma^2(\frac{1}{2} \xi^2 \delta^2 - \frac{1}{2} |\xi| \delta^2)] U_j + O(\gamma^3). \quad (4)$$

in terms of the subgrid variable $\xi = (x - X_j)/h$, and centred mean μ and difference δ operators. The corresponding evolution on the slow manifold is the discretisation

$$\dot{U}_j = \frac{1}{h^2} \gamma^2 \delta^2 U_j - \frac{5\gamma}{12h^2} \gamma^3 \delta^4 U_j + \frac{45 - 75\gamma + 32\gamma^2}{180h^2} \gamma^4 \delta^6 U_j + O(\gamma^7, \delta^8). \quad (5)$$

Evaluated at full physical coupling $\gamma = 1$, this model recovers the classic centred finite difference formula for the discretisation. Computing to higher orders in coupling γ gives more and more terms in the classic formula.

Parameters Compute the asymptotic series to this order of asymptotic error in the small coupling parameter γ.

```plaintext
>>> sahmd <<

let gam^7=>0;
```

Tony Roberts, July 17, 2008
Overview of the algorithm Initialise, then iterate to improve the approximation of the slow manifold until the residuals are zero to the above specified order of error in coupling parameter γ.

```plaintext
% see caddsamm.pdf for documentation
<sahmd preamble>
<sahmd initialisation>
repeat begin
   <sahmd pde>
   <sahmd coupling>
   <sahmd update>
showtime;
end until \{res,rcc,lcc,ctx\} = \{0,0,0,0\};
<sahmd write>
<sahmd transform>
end;
```

2.1 Preamble

Trivially improve printing.

```plaintext
<sahmd preamble>
on div; off allfac; on revpri;
factor h,gam;
linelength 70;
```

Use a homotopy that is convex combination from isolated to fully coupled elements.

```plaintext
<sahmd preamble>
gamm:=gam; gamd:=1-gam;
```
Parametrise solutions by evolving amplitudes $U_j(t)$ (or ‘order parameters’). Generalising the particular example (5), their evolution is $dU_j/dt = \dot{U}_j = g_j(U, \gamma)$.

\begin{verbatim}
>>> sahmd preamble <<<
operator uu; depend uu,t;
let df(uu(~k),t)=>sub(j=k,gj);
\end{verbatim}

Make the subgrid, intrarelement structure a function of $\xi = (x - x_j)/h$, noting that the `sign` function copes with two different parts of the subgrid structure, one for either side of the mid-point of the element.

\begin{verbatim}
>>> sahmd preamble <<<
depend xi,x;
let df(xi,x)=>1/h;
let { df(sign(xi),x)=>0, sign(xi)^2=>1 };
\end{verbatim}

2.2 Initialise

The initial approximation to the slow manifold is an arbitrary equilibrium point, $g_j = 0$, on the slow subspace of piecewise constant solutions u_j.

\begin{verbatim}
>>> sahmd initialisation <<<
uj:=uu(j)$
gj:=0$
\end{verbatim}

2.3 Compute residuals

The partial differential equation to solve is the simple diffusion equation (3). The ‘flux’ derivative is later used in one of the coupling conditions.

\begin{verbatim}
>>> sahmd pde <<<
flux:=-df(uj,x);
\end{verbatim}
res := df(u_j,t) + df(flux,x);

Couple the diffusion PDE (3) in each overlapping element by a condition which asserts that on the one hand when $\gamma = 0$, each element is isolated, but on the other hand when $\gamma = 1$, the field in the jth element when extrapolated to the surrounding elements, ‘hits’ the surrounding grid values precisely:

$$u_j(X_{j\pm 1}) = \gamma' u_j(X_j) + \gamma u_{j\pm 1}(X_{j\pm 1}).$$

The residuals of these two conditions are the following.

atég⊥⊥ sahmd coupling ââ

\[rcc := \text{sub}(xi=+1,u_j) - \text{gamd*sub}(xi=0,u_j) - \text{gamm*sub}\{j=j+1,xi=0\},u_j); \]
\[lcc := \text{sub}(xi=-1,u_j) - \text{gamd*sub}(xi=0,u_j) - \text{gamm*sub}\{j=j-1,xi=0\},u_j); \]

To make the above part of a self-adjoint system of coupling conditions, we then have to couple the gradients according to

$$f_j(X_{j}^+) - f_j(X_{j}^-) + \gamma[f_{j+1}(X_j) - f_{j-1}(X_j)] - \gamma'[f_{j+1}(X_{j+1}) - f_j(X_{j-1})] = 0,$$

where here the flux $f_j = u_{jx}$, the derivative. In the following code, note the use of sign to get evaluation at ±0.

atég⊥⊥ sahmd coupling ââ+

\[ctx := \text{sub}(xi=0,(\text{flux where sign(xi)=>+1}) - (\text{flux where sign(xi)=>-1})) - \text{gamd*(sub(xi=1,flux)-sub(xi=-1,flux))) + gamm*(sub\{j=j+1,xi=-1\},flux) - sub\{j=j-1,xi=+1\},flux)); \]

2.4 Update slow manifold

Update the evolution on the slow manifold using a solvability condition. This particular solvability condition may not be optimal, but it does work.
For execution speed, the above integration over an element is done via the \textit{intx} linear operator.

\begin{verbatim}
\texttt{\texttt{\texttt{operator intx; linear intx;
let \{ intx(xi^{~p},xi)\to(1+(-1)^p)/(p+1),
 intx(xi,xi)\to0, intx(1,xi)\to2,
 intx(sign(xi)*xi^{~p},xi)\to(1-(-1)^p)/(p+1),
 intx(sign(xi)*xi,xi)\to1, intx(sign(xi),xi)\to0 \};}}
\end{verbatim}

Given the above update to the evolution, we next update the subgrid field via a linear operator \textit{solv}, here defined for the preamble, and the coupling conditions.

\begin{verbatim}
\texttt{\texttt{operator solv; linear solv;
let \{ solv(xi^{~p},xi)\to xi^{(p+2)/(p+1)/(p+2)},
 solv(xi,xi)\to xi^{3/2}/3, solv(1,xi)\to xi^{2/2},
 solv(sign(xi)^~a,xi)\to sign(xi)*solv(a,xi),
 solv(sign(xi),xi)\to sign(xi)*solv(1,xi) \};}}
\end{verbatim}

2.5 Write some of the slow manifold

Check that the continuity at the middle of each element, $u_j(X_j^-) = u_j(X_j^+)$, and that the amplitude is the grid value at the middle of each element,
2 Self-adjoint holistic modelling of diffusion

\[u_j(x_j) = U_j. \]

\[
\begin{align*}
\text{res}_\text{cty} &:= \text{sub}(x_i=0, (u_j \text{ where sign}(x_i)=+1)
\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad- (u_j \text{ where sign}(x_i)=-1)); \\
\text{res}_\text{amp} &:= \text{sub}(x_i=0, u_j) - uu(j);
\end{align*}
\]

Print out the evolution on the slow manifold.

\[
\begin{align*}
\gg &:= \gg;
\end{align*}
\]

2.6 Transform evolution

Rewrite the model evolution in terms of centred differences on the grid to generate more appealing versions of the evolution such as (5). These rules use the identities that the spatial shifts \(\varepsilon_\pm = (\mu \pm \delta/2)^2 \) and that \(\mu^2 = 1 + \delta^2/4 \).

\[
\begin{align*}
\gg &:= (g_j \text{ where } \{uu(j)=1, \mu^2=1+\delta^2/4, uu(j+p)=\mu^2/2\text{ when } p<0, uu(j-p)=\mu^2/2\text{ when } p>0\})); \\
\text{dels} &:= \text{coeff}(\gg, \delta) \\
\text{for } p := 0: \text{deg}((1+\gamma)^99, \gamma) \text{ do} \\
\quad \text{write } "h^(-2)*\delta^" , p, \text{factorize}(h^2*\text{part(dels, }p+1));
\end{align*}
\]

Also write as an equivalent partial differential equation. The operator \(du(n) \) denotes the \(n \)th derivative of the grid value \(U_j \).

\[
\begin{align*}
\gg &:= (g_j \text{ where } uu(\sim k) = (du(0) + \text{for } n := 1: \text{ord}+3)
\end{align*}
\]
sum h^n*(k-j)^n*du(n)/factorial(n));
for p:=0:ord do write "h^",p,factorize(coeffn(gepde,h,p));
write gepde_hexpansion:=coeff(sub(gam=1,gepde),h);

3 Self-adjoint modelling of nonlinear diffusion

As a specific example application to nonlinear dynamics [8, 19, e.g.] [14, §4], consider nonlinear diffusion governed by the PDE
\[
\frac{\partial u}{\partial t} = \frac{\partial}{\partial x} \left(u \frac{\partial u}{\partial x} \right). \tag{8}
\]

To generate the slow manifold model of this nonlinear diffusion we reuse much of the previous code for linear diffusion: simply change the residual of the PDE and the expression for the updates.

The computer algebra readily constructs the subgrid field of the slow manifold:
\[
\begin{align*}
 u_j &= [1 + \gamma \xi \mu \delta + \frac{1}{2} \gamma (1 - \gamma) |\xi| \delta^2] U_j \\
 &+ \gamma^2 \left[\xi (1 - |\xi|) (\mu \delta U_j + \frac{1}{2U_j} \mu \delta U_j^2) + (|\xi| - \xi^2) (\frac{1}{2} \delta^2 U_j - \frac{1}{4U_j} \delta^2 U_j^2) \right] \\
 &+ \mathcal{O}(\gamma^3). \tag{9}
\end{align*}
\]

The evolution on this slow manifold gives the discrete model
\[
\dot{U}_j = \frac{1}{2h^2} \gamma^2 \delta^2 U_j^2 - \frac{6-5\gamma}{24h^2} \gamma^3 \delta^4 U_j^2 + \frac{45}{360h^2} \gamma^4 \delta^6 U_j^2 + \mathcal{O}(\gamma^5). \tag{10}
\]

Parameters Compute the asymptotic series to this order of error in the small coupling parameter γ.

\[
\texttt{let gam^5=>0;}
\]
Overview of the algorithm Initialise, then iterate to improve the approximation of the slow manifold until the residual is zero to the required error.

\[
\text{repeat begin} \quad \text{samnd pde} \quad \text{sahmd coupling} \quad \text{samnd update} \quad \text{showtime;}
\]
end until \{\text{res}, \text{rcc}, \text{lcc}, \text{ctx}\} = \{0, 0, 0, 0\};

3.1 Compute residuals of nonlinear diffusion

The partial differential equation to solve is the nonlinear diffusion equation (8).

\[
\text{flux} := -u_j * \text{df}(u_j, x);
\text{res} := \text{df}(u_j, t) + \text{df}(\text{flux}, x);
\]

3.2 Update the nonlinear slow manifold

Update the evolution on the slow manifold using a solvability condition. These need modification by factors of \(u_j\) to cater for the nonlinear diffusion.
Derive coarse grid model of discrete diffusion

Given the update to the evolution, we next update the subgrid field via a linear operator solv and the coupling conditions.

\[
g_j = g_j + (gd = -\text{intx}(\text{res}, xi)/4 - uu(j) \cdot (rcc + lcc) / h^2 - ctx / 2 / h);
\]

\[
u_j = u_j + h^2 \cdot \text{solv}(gd + res, xi) / uu(j) + ctx \cdot \text{sign}(xi) \cdot xi \cdot h / 4 / uu(j) + (lcc - rcc) \cdot xi / 2;
\]

4 Derive coarse grid model of discrete diffusion

Dynamics on a discrete lattice is often used in spatio-temporal research [4, 5, 11, 18, 7, e.g.]. The remaining sections explore how to transform the discrete dynamics of variables $u_i(t)$ on a fine grid of spacing h, into discrete dynamics of variables $U_j(t)$ on a coarser grid of spacing $H = 2h$. The technique is to embed the dynamics into overlapping local elements and construct the slow manifold by controlling the coupling between neighbouring elements [14, §6].

The most basic example of self-adjoint dynamics on a lattice is governed by the discrete diffusion equation nondimensionalised to

\[
\dot{u}_i = u_{i-1} - 2u_i + u_{i+1},
\]

on equi-spaced grid points $x_i = i h$. To form overlapping elements [14, §6], identify the variables $v_{j,i}$, $i = 0, \ldots, 7$, of the jth element with the fine grid variables $u_{2j+i-\frac{7}{2} - \text{sign}(i-\frac{7}{2})}$. Then the fine scale evolution rule within each element and coupling between elements is

\[
D \dot{v}_j = L v_j,
\]
where \(v_j = (v_{j,0}, \ldots, v_{j,7}) \), \(D = \text{diag}(0, 1, 1, 0, 0, 1, 1, 0) \) and

\[
L = \begin{bmatrix}
-1 & 1 & 0 & -\gamma' - \gamma \bar{\epsilon}_- & \gamma' + \gamma \bar{\epsilon}_- & 0 & 0 & 0 \\
1 & -2 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & -2 & 1 & 0 & 0 & 0 & 0 \\
-\gamma' - \gamma \bar{\epsilon}_+ & 0 & 1 & -1 & 0 & 0 & 0 & \gamma' + \gamma \bar{\epsilon}_- \\
\gamma' + \gamma \bar{\epsilon}_+ & 0 & 0 & 0 & -1 & 1 & 0 & -\gamma' - \gamma \bar{\epsilon}_- \\
0 & 0 & 0 & 0 & 1 & -2 & 1 & 0 \\
0 & 0 & 0 & 0 & 1 & -2 & 1 & 0 \\
0 & 0 & 0 & \gamma' + \gamma \bar{\epsilon}_+ & -\gamma' - \gamma \bar{\epsilon}_+ & 0 & 1 & -1
\end{bmatrix}.
\]

Then each element is isolated when \(\gamma = 0 \) and \(\gamma' = 1 \) to form a basis for theoretical support, whereas full coupling occurs with \(\gamma = 1 \) and \(\gamma' = 0 \) to model the discrete diffusion (11).

Executing the computer algebra deduces that the fine grid, intraelement structure is

\[
v_j = \left[\begin{array}{c}
(1, 1, 1, 1, 1, 1, 1, 1) \\
\gamma/4 (-5, -3, -1, 1, -1, 1, 3, 5) \bar{\mu} \bar{\delta} \\
\gamma^2/4 (3, 1, 0, 0, 0, 0, 1, 3) (\bar{\delta}^2 + 1/4 \bar{\delta}^4) \\
\gamma^2/16 (13, 7, 1, -5, 5, -1, -7, -13) \bar{\mu} \bar{\delta}^3 \end{array} \right] U_j + O(\gamma^3),
\]

in terms of the centred mean \(\bar{\mu} \) and difference \(\bar{\delta} \) operators on the coarse grid. The corresponding evolution of the coarse grid ‘order parameters’ \(U_j \), is

\[
\dot{U}_j = \gamma^2 \left(\frac{1}{4} \bar{\delta}^2 + \frac{1}{16} \bar{\delta}^4 \right) + \gamma^3 \left(-\frac{5}{16} \bar{\delta}^4 - \frac{5}{64} \bar{\delta}^6 \right) + O(\gamma^4).
\]

Obtain the lowest accuracy model from the first line, by neglecting terms \(O(\gamma^3) \), and then evaluating at the physical fully coupled case \(\gamma = 1 \): the model is \(\dot{U}_j = \frac{1}{16} (U_{j-2} - 2U_j + U_{j+2}) \) which is appropriate although surprisingly only involves every second coarse grid value.

Parameters Compute the asymptotic series to this order of error in the small interelement coupling parameter \(\gamma \).
4 Derive coarse grid model of discrete diffusion

\[
\text{let } \gamma^5 = 0;
\]

Overview of the algorithm Initialise, then iterate to improve the approximation of the slow manifold until the residual is zero to the required error. In REDUCE, \(\mathbf{t} \mathbf{p}\) denotes the transpose of a matrix.

\[
\text{repeat begin}
\text{\hspace{1cm}}\text{\(\\text{cgmdd residual}\)\hspace{1cm}}
\text{\hspace{1cm}}\text{\(\text{cgmdd update}\)\hspace{1cm}}
\text{\hspace{1cm}}\text{showtime;}
\text{end until res = zero;}
\]

4.1 Preamble

Trivially improve printing.

Use homotopy that is convex combination from isolated, \(\gamma = 0\), to fully coupled, \(\gamma = 1\).
Parametrise solutions by evolving amplitudes $U_j(t)$ (or ‘order parameters’) chosen to be $U_j = \frac{1}{4}(v_{j,2} + v_{j,3} + v_{j,4} + v_{j,5})$. Their evolution is $dU_j/dt = \dot{U}_j = g_j(U, \gamma)$.

4.2 Initialise

The initial approximation is an arbitrary equilibrium point, $g_j = 0$, on the slow subspace of piecewise constant solutions v_j.

4.3 Compute residual

The evolution on the fine grid is the isolated diffusion modified by the coupling with neighbouring elements.
4 Derive coarse grid model of discrete diffusion

\[
\begin{align*}
\text{sub}(j=j+1, v_j(1,1)) - \text{sub}(j=j-1, v_j(8,1)), \\
0,0, \\
\text{sub}(j=j+1, +v_j(4,1)-v_j(5,1))
\end{align*}
\]

Where in the above the linear operator of diffusion on an element, decoupled from the other elements is the following.

\[
\begin{align*}
\text{ll} := \text{mat}((-1,1,0,-\text{gamd},+\text{gamd},0,0,0), \\
(1,-2,1,0,0,0,0,0), \\
(0,1,-2,1,0,0,0,0), \\
(-\text{gamd},0,1,-1,0,0,0,+\text{gamd}), \\
(+\text{gamd},0,0,0,-1,1,0,-\text{gamd}), \\
(0,0,0,0,1,-2,1,0), \\
(0,0,0,0,0,1,-2,1), \\
(0,0,0,+\text{gamd},-\text{gamd},0,1,-1))
\end{align*}
\]

4.4 Update approximation to the slow manifold

Update the coarse grid evolution from the vector of residuals using the solvability condition.

\[
\begin{align*}
\text{gd} := (1/4) \times \text{mat}((1,1,1,1,1,1,1,1)) \times \text{res}; \\
\text{gj} := \text{gj} + \text{gd}(1,1);
\end{align*}
\]

Update the fine grid, intraelement structure from the vector of residuals using the generalised inverse \(\text{gil} \).

\[
\begin{align*}
\text{vj} := \text{vj} + \text{gil} \times (-\text{res} + \text{tp} \times \text{mat}((0,1,1,0,0,1,1,0)) \times \text{gd});
\end{align*}
\]
Use the following generalised inverse of $\mathbf{11}$ that ensures the sum of the centre four grid values are zero—this ensures the amplitude of the coarse grid model is the grid value at the centre of each element.

\begin{verbatim}
>>> cgmdd preamble <<<
gil:=mat((-17,-11,-5,-3,7,1,-9,-19),(-11,-17,-7,-1,5,3,-3,-9),(-5,-7,-9,1,3,5,3,1),(-3,-1,1,-1,-3,5,7),(7,5,3,-3,-1,1,-1,-3),(1,3,5,3,1,-9,-7,-5),(-9,-3,3,5,1,-7,-17,-11),(-19,-9,1,7,-3,-5,-11,-17))/16$
\end{verbatim}

4.5 Write some of the slow manifold

Just print the evolution, after checking the amplitude equation.

\begin{verbatim}
>>> cgmdd write <<<
res_ampl:=(for i:=3:6 sum vj(i,1))-4*u(j);
write gj:=gj;
\end{verbatim}

4.6 Transform the coarse grid evolution

To appreciate different aspects of the coarse grid evolution on the slow manifold, we rewrite the dynamics in various ways. First write in terms of coarse grid centred operators. This is the natural expression of the dynamics.

\begin{verbatim}
>>> cgmdd transform <<<
write
gjcors:=(gj where {u(j+~p)=>(mu+del/2)^(+2*p) when p>0,u(j+~p)=>(mu-del/2)^(-2*p) when p<0,u(j)=>1,mu^2=>1+del^2/4});
\end{verbatim}
Write in terms of the next coarser grid centred operators. This is not natural, but may be of interest although I have not reported any of these expressions.

\[
\text{// cgmd transform}
\]

\[
\begin{align*}
g_{\text{mega}} &= (g_j \text{ where }
\begin{cases}
u(j+p) &= (\mu + \delta/2)^{+p} \text{ when } p > 0 \\
u(j-p) &= (\mu - \delta/2)^{-p} \text{ when } p < 0 \\
u(j) &= 1, \mu^2 = 1 + \delta^2/4
\end{cases}
\end{align*}
\]

Write in terms of the original fine grid centred operators. This is the equivalent fine grid dynamics and confirms that the analysis indeed accurately reproduces the coarse scale dynamics that take place on the original fine grid.

\[
\text{// cgmd transform}
\]

\[
\begin{align*}
g_{\text{fine}} &= (g_j \text{ where }
\begin{cases}
u(j+p) &= (\mu + \delta/2)^{+4p} \text{ when } p > 0 \\
u(j-p) &= (\mu - \delta/2)^{-4p} \text{ when } p < 0 \\
u(j) &= 1, \mu^2 = 1 + \delta^2/4
\end{cases}
\end{align*}
\]

The above forms are organised largely in terms of the coupling parameter γ. We also write results organised in terms of the centred difference operator δ.

\[
\text{// cgmd transform}
\]

\[
dels := \text{coeff}(g_{\text{fine}}, \delta)\\
\text{for } p := 0 \text{ to } \text{deg}((1+\gamma)^99, \gamma) \text{ do }\\
\text{write } "\text{del}^\text{p}" , p , \text{factorize(part(dels, p+1))};
\]
5 Coarse grid modelling of nonlinear reaction diffusion

This section modifies the algorithm of the previous Section 4 to model the nonlinear reaction diffusion [20, e.g.][14, §7.1] on a lattice of

\[\dot{u}_i = \delta^2 u_i + \alpha (u_i - u_i^2). \] (15)

We reuse the previous section’s code except for truncating in the nonlinear parameter \(\alpha \) and including the nonlinear reaction in the residual.

Parameters Compute the asymptotic series to this order of truncation in the small coupling parameter \(\gamma \) and the small reaction strength \(\alpha \).

\`\`
\begin{verbatim}
let \{gam^3=>0,alfa^2=>0\};
\end{verbatim}\`

Improve printed appearance.

\`\`
\begin{verbatim}
factor alfa;
\end{verbatim}\`

Overview of the algorithm Initialise, then iterate to improve the approximation of the slow manifold until the residual is zero to the required error. Do exactly the same algorithm except include some nonlinear terms in the residual of the differential equations.

\`\`
\begin{verbatim}
% see caddsamm.pdf for documentation
\end{verbatim}\`

Tony Roberts, July 17, 2008
5.1 Nonlinear terms

Include in the residual the nonlinear reaction $\alpha(u_i - u_i^2)$ in the interior grid points of each element.

\[\text{res} := \text{res} + \alpha \text{mat}(0, vj(2,1)-vj(2,1)^2, vj(3,1)-vj(3,1)^2, 0, 0, vj(6,1)-vj(6,1)^2, vj(7,1)-vj(7,1)^2, 0) \]

6 Homogenisation of diffusivity variations

A canonical problem in spatially inhomogeneous dynamics is the effective large scale diffusion through a domain with microscopic variations in diffusion coefficient [3, 17, 1, e.g.]. This section adapts the algorithm of Section 4 to transform diffusion on a fine grid, with fine grid variations in coefficient, into an ‘homogenised’ diffusion on a coarser grid [14, §7.2].

Here consider

\[\dot{u}_i = \delta [f_i \delta u_i] \tag{16} \]

where the diffusion coefficient governing flux between fine grid points $x_{i-\frac{1}{2}}$ and $x_{i+\frac{1}{2}}$ is $f_i = 1 + \epsilon \kappa_i$. For simplicity, we model the dynamics as a power series in ϵ, the strength of the inhomogeneity.

The computer algebra finds the evolution on the slow manifold is, for example,

\[\dot{U}_j = \gamma^2 \frac{1}{16} \{ K_{j-1} U_{j-2} - (K_{j-1} + K_{j+1}) U_j + K_{j+1} U_{j+2} \} + O(\gamma^3) \tag{17} \]
where the coarse grid effective diffusivity coefficients

\[K_j = 1 + \epsilon^4_1 \left[\kappa_{2j-2} + \kappa_{2j-1} + \kappa_{2j+1} + \kappa_{2j+2} \right] + \mathcal{O}(\epsilon^2). \]

Beautifully, the effective diffusivity on the coarse grid is \textit{local}: the diffusivity \(K_{j\pm 1} \) governing the flux between coarse grid point \(X_j \) and \(X_{j\pm 2} \) depends only upon the fine scale diffusivities between \(X_j \) and \(X_{j\pm 2} \), namely between \(\kappa_{2j} \) and \(\kappa_{2j\pm 4} \).

Parameters Compute the asymptotic series to this order of truncation in the small coupling parameter \(\gamma \) and the small variations on the diffusivity \(\epsilon \). Use small variations in diffusivity as it is then simpler to derive and simpler to see changes to the case of uniform diffusion, rather than look at complicated exact expressions.

\[\texttt{let \{gam^3=>0,eps^3=>0\};} \]

Improve printed appearance.

\[\texttt{factor eps;} \]

Set the following flag to one to explore the specific case of zigzag diffusivity. For general diffusivity variations, set it to zero.

\[\texttt{zigzag:=0;} \]

Overview of the algorithm Initialise, then iterate to improve the approximation of the slow manifold until the residual is zero to the required error. Use much of the basic algorithm of Section 4, the main change is simply to add the variations to the computation of the residuals.
6 Homogenisation of diffusivity variations

\[\texttt{zero:=tp mat((0,0,0,0,0,0,0,0))$} \]
repeat begin
\[\texttt{showtime;} \]
end until res=zero;
\[\texttt{if zigzag then begin} \]
\[\texttt{end else write cgdiffusivity:=coeffn(gj,u(j+2),1);} \]
end;

In the last few lines above, invoke the transformation of the model in
the simpler case of zigzag diffusivity.

6.1 Variation in diffusivity

Include in the residual a varying diffusivity: firstly via a matrix for the
intraelement modifications; and secondly via the coupling terms with neigh-
bouring elements.

\[\texttt{res:=res+eps*kap*vj +eps*gamm*tp mat((} \]
\[\texttt{sub(j=j-1,-kap(2*j)*vj(4,1)+kap(2*j)*vj(5,1)),} \]
\[\texttt{0,0,} \]
\[\texttt{kap(2*j)*sub(j=j-1,vj(8,1))-kap(2*j)*sub(j=j+1,vj(1,1)),} \]
\[\texttt{kap(2*j)*sub(j=j+1,vj(1,1))-kap(2*j)*sub(j=j-1,vj(8,1)),} \]
\[\texttt{0,0,} \]
\[\texttt{sub(j=j+1,+kap(2*j)*vj(4,1)-kap(2*j)*vj(5,1))} \]
7 Derive envelope equation for zigzag patterns

The operator $\kappa = \kappa_i$ denotes the variations in diffusivity.

```plaintext
operator kp;
```

Activate the following to obtain the coarse grid model for a zigzag microscale. Then perhaps work to higher order.

```plaintext
if zigzag then let kp(~p)=>(-1)^(p-2*j);
if zigzag then let \{\gamma^5=>0,\epsilon^5=>0\};
```

The matrix of diffusivity variations within each element are stored in κ_p.

```plaintext
kap:=mat(
   (kp(2*j-2),+kp(2*j-2),0,-gamd*kp(2*j),+gamd*kp(2*j),0,0,0),
   (+kp(2*j-2),-kp(2*j-2)-kp(2*j-1),+kp(2*j-1),0,0,0,0,0),
   (0,+kp(2*j-1),-kp(2*j-1)-kp(2*j),+kp(2*j),0,0,0,0),
   (-gamd*kp(2*j),0,+kp(2*j),-kp(2*j),0,0,0,0),
   (+gamd*kp(2*j),0,0,0,-kp(2*j),0,0,0),
   (0,0,0,0,+kp(2*j),-kp(2*j)-kp(2*j+1),+kp(2*j+1),0),
   (0,0,0,0,+kp(2*j+1),-kp(2*j+1)-kp(2*j+2),+kp(2*j+2)),
   (0,0,0,0,+gamd*kp(2*j),-gamd*kp(2*j),0,+kp(2*j+2),-kp(2*j+2)));
```

These are the only changes necessary.

7 Derive envelope equation for zigzag patterns

An outstanding issue in modelling is the direct discrete, macroscale modelling of pattern evolution [6, 2, e.g.]. On a lattice, one of the simplest
microscale discrete evolution equations is
\[\dot{u}_i = -4\mu^2 u_i + au_i^2 = -u_{i-1} - 2u_i - u_{i+1} + au_i^2. \] (18)

What is the corresponding coarser grid equation governing the local amplitude of the zigzag mode? In particular, does the quadratic nonlinearity stabilise or destabilise the origin? [14, §7.3]

The computer algebra to construct the slow manifold is copied from Section 4 but with numbers changed by \((-1)^i\) to account for the zigzag neutral mode. The corresponding evolution of the coarse grid order parameters, the amplitudes \(U_j\), then governs the local amplitude of the zigzag mode, rather than the local mean field. Here the coarser scale \textit{modulation} equation
\[\dot{U}_j = \gamma^2(\frac{1}{4}\bar{\delta}^2 + \frac{1}{16}\bar{\delta}^4)U_j - a\gamma\frac{1}{4}(\bar{\delta}\bar{\mu}U_j)(\bar{\delta}^2U_j) + \frac{1}{2}a^2U_j^3 + \mathcal{O}(\gamma^2 + a^3). \] (19)

Evaluated at \(\gamma = 1\) this coarse grid model predicts that the quadratic nonlinearity in (18) is destabilising as the rational closure of the fine grid dynamics generates the cubic growth term \(\frac{1}{2}a^2U_j^3\).

\textbf{Parameters} Compute the asymptotic series to this order of error in the small coupling parameter \(\gamma\) and in the small nonlinearity \(\alpha\). Omitting terms \(\mathcal{O}(\alpha^3)\) gives a basic nonlinear model.

\begin{verbatim}
\\[\texttt{let \{gam^3=>0,alfa^3=>0\};}
\\[\texttt{\textbf{Improver printed appearance.}}
\\[\texttt{\\[\texttt{let \{gam^3=>0,alfa^3=>0\};}}
\\[\texttt{\textbf{factor alfa;}}
\\end{verbatim}

\textbf{Overview of the algorithm} Initialise, then iterate to improve the approximation of the slow manifold until the residual is zero to the required error. Note that \(tp\) denotes the transpose.
7 Derive envelope equation for zigzag patterns

\[\Delta \Delta \text{eezzp} \]

% see caddsamm.pdf for documentation
\[\ll \text{cgmdd preamble} \rr \]
\[\ll \text{eezzp initialisation} \rr \]
\[\text{zero:=tp mat((0,0,0,0,0,0,0,0))} \]
\[\text{repeat begin} \]
\[\ll \text{eezzp residual} \rr \]
\[\ll \text{eezzp update} \rr \]
\[\text{showtime;} \]
\[\text{end until res=zero;} \]
\[\ll \text{eezzp write} \rr \]
\[\text{end;} \]

7.1 Initialise

The initial approximation is an arbitrary equilibrium point, \(g_j = 0 \), on the slow subspace of piecewise zigzag solutions \(v_j \).

\[\gg \text{eezzp initialisation} \ll \]
\[g_j:=0 \]
\[v_j:=u(j)*tp \text{ mat((1,-1,1,-1,1,-1,1,-1))} \]

7.2 Compute residual

The evolution on the fine grid is the isolated zigzag formation, modified by the coupling with neighbouring elements, and with a nonlinear effect. Here the quadratic nonlinearity is scaled by \(\gamma \) to consistently simplify this truncation of the model.

\[\gg \text{eezzp residual} \ll \]
\[\text{res:=-tp mat((0,df(vj(2,1),t),df(vj(3,1),t),0}
\[,0,df(vj(6,1),t),df(vj(7,1),t),0)) \]
\[+ll*vj \]
\[+gamm*tp \text{ mat((} \]

Tony Roberts, July 17, 2008
7 Derive envelope equation for zigzag patterns

\[
\begin{align*}
&\text{sub}(j=j-1, v_{j(4,1)}+v_{j(5,1)}), \\
&0,0, \\
&\text{sub}(j=j-1, v_{j(8,1)})+\text{sub}(j=j+1, v_{j(1,1)}), \\
&\text{sub}(j=j+1, v_{j(1,1)})+\text{sub}(j=j-1, v_{j(8,1)}), \\
&0,0, \\
&\text{sub}(j=j+1, v_{j(4,1)}+v_{j(5,1)}) \\
&+\gamma\alpha tp \text{ mat}((0, v_{j(2,1)}^2, v_{j(3,1)}^2, 0, 0, v_{j(6,1)}^2, v_{j(7,1)}^2, 0, v_{j(6,1)}^2, v_{j(7,1)}^2, 0, v_{j(6,1)}^2, v_{j(7,1)}^2, 0));
\end{align*}
\]

Where in the above, the linear operator on an element, decoupled from the other elements is the following.

\[
\begin{align*}
&\gg \text{eezzp initialisation } \ll \\
&11:=\text{mat}((-1,-1,0,\gamma d,\gamma d,0,0,0) \\
&\quad,(-1,-2,-1,0,0,0,0,0) \\
&\quad,(0,-1,-2,-1,0,0,0,0) \\
&\quad,(\gamma d,0,-1,-1,0,0,0,0) \\
&\quad,(\gamma d,0,0,0,-1,-1,0,0) \\
&\quad,(0,0,0,0,-1,-2,-1,0) \\
&\quad,(0,0,0,0,-1,-2,-1) \\
&\quad,(0,0,0,\gamma d,\gamma d,0,-1,-1))$
\end{align*}
\]

7.3 Update approximation to the slow manifold

Update the coarse grid evolution using the solvability condition.

\[
\begin{align*}
&\gg \text{eezzp update } \ll \\
&\text{gd}:=(1/4)\text{ mat}((1,-1,1,-1,1,-1,1,-1))\ast \text{res}; \\
&\text{gj}: = \text{gj} + \text{gd}(1,1);
\end{align*}
\]

Update the fine grid, intraelement structure using a generalised inverse \texttt{gil}.
Use the following generalised inverse of 11 that ensures the sum of the centre four grid values are zero—this ensures the amplitude of the coarse grid model is the grid value at the centre of each element.

$$
\text{gil:=mat(}
\begin{array}{cccccccc}
-17,11,-5,3,7,-1,-9,19, \\
11,-17,7,-1,-5,3,3,-9, \\
-5,7,-9,1,3,-5,3,-9, \\
3,-1,1,-1,3,3,-5,7, \\
7,-5,3,3,-1,1,1,3, \\
-1,3,-5,3,-1,-9,7,-5, \\
-9,3,3,-5,-1,7,-17,11, \\
19,-9,-1,7,3,-5,11,-17
\end{array}
) / 16$
$$

7.4 Write some of the slow manifold

Just print the evolution, after checking the amplitude equation.

$$
\text{res_ampl:=(for i:=3:6 sum (-1)^(i-1)*vj(i,1))-4*u(j);}
$$

Write gj:=gj;

Acknowledgement I thank the Australian Research Council for support via grant DP0774311.

References

