Atmospheric radiative feedbacks associated with transient climate change and climate variability

Colman, Robert A. and Power, Scott B. (2010) Atmospheric radiative feedbacks associated with transient climate change and climate variability. Climate Dynamics, 34 (7-8). pp. 919-933. ISSN 0930-7575


This study examines in detail the 'atmospheric' radiative feedbacks operating in a coupled General Circulation Model (GCM). These feedbacks (defined as the change in top of atmosphere radiation per degree of global surface temperature change) are due to responses in water vapour, lapse rate, clouds and surface albedo. Two types of radiative feedback in particular are considered: those arising from century scale 'transient' warming (from a 1% per annum compounded CO2 increase), and those operating under the model's own unforced 'natural' variability. The time evolution of the transient (or 'secular') feedbacks is first examined. It is found that both the global strength and the latitudinal distributions of these feedbacks are established within the first two or three decades of warming, and thereafter change relatively little out to 100 years. They also closely approximate those found under equilibrium warming from a 'mixed layer' ocean version of the same model forced by a doubling of CO2. These secular feedbacks are then compared with those operating under unforced (interannual) variability. For water vapour, the interannual feedback is only around two-thirds the strength of the secular feedback. The pattern reveals widespread regions of negative feedback in the interannual case, in turn resulting from patterns of circulation change and regions of decreasing as well as increasing surface temperature. Considering the vertical structure of the two, it is found that although positive net mid to upper tropospheric contributions dominate both, they are weaker (and occur lower) under interannual variability than under secular change and are more narrowly confined to the tropics. Lapse rate feedback from variability shows weak negative feedback over low latitudes combined with strong positive feedback in mid-to-high latitudes resulting in no net global feedback-in contrast to the dominant negative low to mid-latitude response seen under secular climate change. Surface albedo feedback is, however, slightly stronger under interannual variability-partly due to regions of extremely weak, or even negative, feedback over Antarctic sea ice in the transient experiment. Both long and shortwave global cloud feedbacks are essentially zero on interannual timescales, with the shortwave term also being very weak under climate change, although cloud fraction and optical property components show correlation with global temperature both under interannual variability and transient climate change. The results of this modelling study, although for a single model only, suggest that the analogues provided by interannual variability may provide some useful pointers to some aspects of climate change feedback strength, particularly for water vapour and surface albedo, but that structural differences will need to be heeded in such an analysis. © 2009 Springer-Verlag.

Statistics for USQ ePrint 42449
Statistics for this ePrint Item
Item Type: Article (Commonwealth Reporting Category C)
Refereed: Yes
Item Status: Live Archive
Additional Information: Permanent restricted access to Published version in accordance with the copyright policy of the publisher.
Faculty/School / Institute/Centre: No Faculty
Faculty/School / Institute/Centre: No Faculty
Date Deposited: 24 Nov 2021 05:18
Last Modified: 24 Nov 2021 06:30
Uncontrolled Keywords: climate change; climate feedbacks; climate variability;
Fields of Research (2008): 04 Earth Sciences > 0401 Atmospheric Sciences > 040104 Climate Change Processes
Fields of Research (2020): 37 EARTH SCIENCES > 3702 Climate change science > 370201 Climate change processes
Socio-Economic Objectives (2008): D Environment > 96 Environment > 9603 Climate and Climate Change > 960310 Global Effects of Climate Change and Variability (excl. Australia, New Zealand, Antarctica and the South Pacific) ""
Socio-Economic Objectives (2020): 19 ENVIRONMENTAL POLICY, CLIMATE CHANGE AND NATURAL HAZARDS > 1905 Understanding climate change > 190507 Global effects of climate change (excl. Australia, New Zealand, Antarctica and the South Pacific) (excl. social impacts)
Identification Number or DOI:

Actions (login required)

View Item Archive Repository Staff Only