Robust twenty-first-century projections of El Niño and related precipitation variability

Power, Scott and Delage, Francois and Chung, Christine and Kociuba, Greg and Keay, Kevin (2013) Robust twenty-first-century projections of El Niño and related precipitation variability. Nature, 502 (7472). pp. 541-545. ISSN 0028-0836


Abstract

The El Nino-Southern Oscillation (ENSO) drives substantial variability in rainfall, severe weather, agricultural production, ecosystems and disease in many parts of the world. Given that further human-forced changes in the Earth's climate system seem inevitable, the possibility exists that the character of ENSO and its impacts might change over the coming century. Although this issue has been investigated many times during the past 20 years, there is very little consensus on future changes in ENSO, apart from an expectation that ENSO will continue to be a dominant source of year-to-year variability. Here we show that there are in fact robust projected changes in the spatial patterns of year-to-year ENSO-driven variability in both surface temperature and precipitation. These changes are evident in the two most recent generations of climate models, using four different scenarios for CO2 and other radiatively active gases. By the mid-to late twenty-first century, the projections include an intensification of both El-Niño-driven drying in the western Pacific Ocean and rainfall increases in the central and eastern equatorial Pacific. Experiments with an Atmospheric General Circulation Model reveal that robust projected changes in precipitation anomalies during El Nino years are primarily determined by a nonlinear response to surface global warming. Uncertain projected changes in the amplitude of ENSO-driven surface temperature variability have only a secondary role. Projected changes in key characteristics of ENSO are consequently much clearer than previously realized.


Statistics for USQ ePrint 42434
Statistics for this ePrint Item
Item Type: Article (Commonwealth Reporting Category C)
Refereed: Yes
Item Status: Live Archive
Faculty/School / Institute/Centre: No Faculty
Faculty/School / Institute/Centre: No Faculty
Date Deposited: 06 Jan 2022 01:29
Last Modified: 07 Jan 2022 01:49
Uncontrolled Keywords: agricultural production; atmospheric general circulation model; disease; El Nino-Southern Oscillation; global warming; rainfall; severe weather; surface
Fields of Research (2008): 04 Earth Sciences > 0401 Atmospheric Sciences > 040104 Climate Change Processes
Fields of Research (2020): 37 EARTH SCIENCES > 3702 Climate change science > 370201 Climate change processes
Socio-Economic Objectives (2008): D Environment > 96 Environment > 9603 Climate and Climate Change > 960310 Global Effects of Climate Change and Variability (excl. Australia, New Zealand, Antarctica and the South Pacific) ""
D Environment > 96 Environment > 9603 Climate and Climate Change > 960309 Effects of Climate Change and Variability on the South Pacific (excl. Australia and New Zealand) (excl. Social Impacts)
Socio-Economic Objectives (2020): 19 ENVIRONMENTAL POLICY, CLIMATE CHANGE AND NATURAL HAZARDS > 1905 Understanding climate change > 190507 Global effects of climate change (excl. Australia, New Zealand, Antarctica and the South Pacific) (excl. social impacts)
Identification Number or DOI: https://doi.org/10.1038/nature12580
URI: http://eprints.usq.edu.au/id/eprint/42434

Actions (login required)

View Item Archive Repository Staff Only