Nonlinear precipitation response to El Nino and global warming in the Indo-Pacific

Chung, Christine T. Y. and Power, Scott B. and Arblaster, Julie M. and Rashid, Harun A. and Roff, Gregory L. (2014) Nonlinear precipitation response to El Nino and global warming in the Indo-Pacific. Climate Dynamics, 42 (7-8). pp. 1837-1856. ISSN 0930-7575


Abstract

Precipitation changes over the Indo-Pacific during El Niño events are studied using an Atmospheric General Circulation Model forced with sea-surface temperature (SST) anomalies and changes in atmospheric CO2 concentrations. Linear increases in the amplitude of the El Niño SST anomaly pattern trigger nonlinear changes in precipitation amounts, resulting in shifts in the location and orientation of the Intertropical Convergence Zone (ITCZ) and the South Pacific Convergence Zone (SPCZ). In particular, the maximum precipitation anomaly along the ITCZ and SPCZ shifts eastwards, the ITCZ shifts south towards the equator, and the SPCZ becomes more zonal. Precipitation in the equatorial Pacific also increases nonlinearly. The effect of increasing CO2 levels and warming SSTs is also investigated. Global warming generally enhances the tropical Pacific precipitation response to El Niño. The precipitation response to El Niño is found to be dominated by changes in the atmospheric mean circulation dynamics, whereas the response to global warming is a balance between dynamic and thermodynamic changes. While the dependence of projected climate change impacts on seasonal variability is well-established, this study reveals that the impact of global warming on Pacific precipitation also depends strongly on the magnitude of the El Niño event. The magnitude and structure of the precipitation changes are also sensitive to the spatial structure of the global warming SST pattern. © 2013 Springer-Verlag Berlin Heidelberg.


Statistics for USQ ePrint 42432
Statistics for this ePrint Item
Item Type: Article (Commonwealth Reporting Category C)
Refereed: Yes
Item Status: Live Archive
Additional Information: Permanent restricted access to Published version in accordance with the copyright policy of the publisher.
Faculty/School / Institute/Centre: No Faculty
Faculty/School / Institute/Centre: No Faculty
Date Deposited: 24 Nov 2021 06:39
Last Modified: 24 Nov 2021 06:39
Uncontrolled Keywords: air-sea interaction; climate change; climate variability; El-Nino Southern Oscillation; global warming
Fields of Research (2008): 04 Earth Sciences > 0401 Atmospheric Sciences > 040104 Climate Change Processes
Fields of Research (2020): 37 EARTH SCIENCES > 3702 Climate change science > 370202 Climatology
Socio-Economic Objectives (2008): D Environment > 96 Environment > 9603 Climate and Climate Change > 960310 Global Effects of Climate Change and Variability (excl. Australia, New Zealand, Antarctica and the South Pacific) ""
D Environment > 96 Environment > 9603 Climate and Climate Change > 960309 Effects of Climate Change and Variability on the South Pacific (excl. Australia and New Zealand) (excl. Social Impacts)
Socio-Economic Objectives (2020): 19 ENVIRONMENTAL POLICY, CLIMATE CHANGE AND NATURAL HAZARDS > 1905 Understanding climate change > 190506 Effects of climate change on the South Pacific (excl. Australia and New Zealand) (excl. social impacts)
19 ENVIRONMENTAL POLICY, CLIMATE CHANGE AND NATURAL HAZARDS > 1905 Understanding climate change > 190502 Climate variability (excl. social impacts)
Identification Number or DOI: https://doi.org/10.1007/s00382-013-1892-8
URI: http://eprints.usq.edu.au/id/eprint/42432

Actions (login required)

View Item Archive Repository Staff Only