Precipitation response to La Nina and global warming in the Indo-Pacific

Chung, Christine T. Y. and Power, Scott B. (2014) Precipitation response to La Nina and global warming in the Indo-Pacific. Climate Dynamics, 43 (12). pp. 3293-3307. ISSN 0930-7575


Abstract

Recent studies have highlighted the nonlinear rainfall response to El Niño sea surface temperature (SST) events in the Indo-Pacific region and how this response might change over coming decades. Here we investigate the response to La Niña SST anomalies with and without global warming by performing idealised SST-forced experiments with an atmospheric general circulation model. The La Niña SST anomaly is multiplied by a factor 1≤α≤4 and added to climatological SSTs. Similar experiments using El Niño SST anomalies were previously performed, in which large nonlinearities in the precipitation response were evident. We find that: (i) Under current climatic conditions, as α increases, the precipitation responds in three ways: the intertropical convergence zone (ITCZ) dries and moves poleward, the maximum precipitation along the equator moves west, and the South Pacific convergence zone (SPCZ) narrows, intensifies, and elongates. For weak (α=1) La Niña events, the precipitation anomalies approximately mirror those from the El Niño events along the ITCZ and SPCZ, though there are some marked differences in the central-eastern Pacific. For stronger La Niña events (α>1), precipitation responds nonlinearly to SST anomalies, though the nonlinearities are smaller and differ spatially from the nonlinearities in the El Niño runs. (ii) The addition of a global warming SST pattern increases rainfall in the western Pacific and SPCZ, enhances the narrowing of the SPCZ, and increases the nonlinear response in the western Pacific. However, large La Niña events reduce the impact of global warming along the central-eastern equatorial Pacific as the global warming and La Niña SST anomalies have opposite signs in that region. (iii) The response to La Niña SST anomalies is driven primarily by changes in the atmospheric circulation, whereas the response to the global warming SST pattern is mainly driven by increases in atmospheric moisture. (iv) Large changes in La Niña-driven rainfall anomalies can occur in response to global warming, even if the La Nina SST anomalies relative to the warmer background state are completely unchanged.


Statistics for USQ ePrint 42425
Statistics for this ePrint Item
Item Type: Article (Commonwealth Reporting Category C)
Refereed: Yes
Item Status: Live Archive
Additional Information: Permanent restricted access to Published version in accordance with the copyright policy of the publisher.
Faculty/School / Institute/Centre: No Faculty
Faculty/School / Institute/Centre: No Faculty
Date Deposited: 23 Nov 2021 04:39
Last Modified: 23 Dec 2021 08:35
Uncontrolled Keywords: climate change; climate variability; El Nino Southern Oscillation; global warming
Fields of Research (2008): 04 Earth Sciences > 0401 Atmospheric Sciences > 040104 Climate Change Processes
Fields of Research (2020): 37 EARTH SCIENCES > 3702 Climate change science > 370202 Climatology
Socio-Economic Objectives (2008): D Environment > 96 Environment > 9603 Climate and Climate Change > 960304 Climate Variability (excl. Social Impacts)
Socio-Economic Objectives (2020): 19 ENVIRONMENTAL POLICY, CLIMATE CHANGE AND NATURAL HAZARDS > 1905 Understanding climate change > 190502 Climate variability (excl. social impacts)
19 ENVIRONMENTAL POLICY, CLIMATE CHANGE AND NATURAL HAZARDS > 1905 Understanding climate change > 190599 Understanding climate change not elsewhere classified
Identification Number or DOI: https://doi.org/10.1007/s00382-014-2105-9
URI: http://eprints.usq.edu.au/id/eprint/42425

Actions (login required)

View Item Archive Repository Staff Only