Influence of prism geometry on the compressive strength of concrete masonry

Abasi, Ali and Hassanli, Reza and Vincent, Thomas and Manalo, Allan (2020) Influence of prism geometry on the compressive strength of concrete masonry. Construction and Building Materials, 264:120182. pp. 1-17. ISSN 0950-0618


Abstract

The compressive strength of concrete masonry depends on the dimensions of the test prisms. The available international masonry codes apply correction factors based on the height-to-thickness ratio to modify the strength obtained from different sizes of prisms. In this study, finite element models were developed to investigate the accuracy of this approach. Simplified micro-modeling method was used to simulate the behavior of masonry prisms which was verified against experimental results. A parametric study was then performed to examine the effect of key parameters on the compressive strength of masonry. The effect of the length-to-thickness ratio of masonry prisms was found to be significant on the compressive strength and should be considered together with the well understood effect of height-to-thickness ratio to calculate the correction factors. It was also shown that the current correction factors provided in the masonry codes lead to overestimating the strength of masonry prisms. New correction factors have been proposed accounting both the height-to-thickness and length-to-thickness ratio to reliably and safely estimate the compressive strength of masonry prisms.


Statistics for USQ ePrint 41151
Statistics for this ePrint Item
Item Type: Article (Commonwealth Reporting Category C)
Refereed: Yes
Item Status: Live Archive
Faculty/School / Institute/Centre: Current - Faculty of Health, Engineering and Sciences - School of Civil Engineering and Surveying (1 Jul 2013 -)
Faculty/School / Institute/Centre: Current - Institute for Advanced Engineering and Space Sciences - Centre for Future Materials (1 Jan 2017 -)
Date Deposited: 05 Feb 2021 05:49
Last Modified: 10 Feb 2021 05:22
Uncontrolled Keywords: Compressive strength, Correction factor, Finite element, Height-to-thickness ratio, Masonry, Prism’s size
Fields of Research (2008): 09 Engineering > 0905 Civil Engineering > 090506 Structural Engineering
09 Engineering > 0912 Materials Engineering > 091202 Composite and Hybrid Materials
Fields of Research (2020): 40 ENGINEERING > 4005 Civil engineering > 400510 Structural engineering
40 ENGINEERING > 4016 Materials engineering > 401602 Composite and hybrid materials
Socio-Economic Objectives (2008): E Expanding Knowledge > 97 Expanding Knowledge > 970109 Expanding Knowledge in Engineering
Socio-Economic Objectives (2020): 28 EXPANDING KNOWLEDGE > 2801 Expanding knowledge > 280110 Expanding knowledge in engineering
Identification Number or DOI: https://doi.org/10.1016/j.conbuildmat.2020.120182
URI: http://eprints.usq.edu.au/id/eprint/41151

Actions (login required)

View Item Archive Repository Staff Only