Effect of Different Constituent Fiber, Resin, and Sizing Combinations on Alkaline Resistance of Basalt, Carbon, and Glass FRP Bars

Benmokrane, B. and Hassan, M. and Robert, M. and Vijay, P. V. and Manalo, A. (2020) Effect of Different Constituent Fiber, Resin, and Sizing Combinations on Alkaline Resistance of Basalt, Carbon, and Glass FRP Bars. ASCE Journal of Composites for Construction, 24 (3):04020010. pp. 1-18. ISSN 1090-0268


Abstract

When used as an internal reinforcement, fiber-reinforced-polymer (FRP) composite bars are exposed to a highly alkaline (pH > 12.5) concrete environment. This study evaluated the durability of 24 types of FRP bars in a simulated alkaline concrete environment, specifically with respect to reinforcing-fiber type (carbon, basalt, and glass), fiber sizing, resin chemistry, and manufacturer. A total of 10 types of glass fibers, including two types of E-glass fibers and eight types of electrical corrosion resistance (ECR)-glass fibers, four types of basalt fibers, two types of carbon fibers, six types of resin systems based on vinyl ester, polyurethane, and epoxy resins, and five types of proprietary fiber sizings were used in manufacturing the bars. The study focused on assessing the tensile, transverse-shear, and interlaminar-shear properties of FRP bars subjected to 3 months of accelerated alkaline conditioning at 60°C, as per Canadian Standards Association (CSA) and American Society for Testing and Materials (ASTM) standards. The strength retention and failure of these bars were evaluated as a measurement of the durability and long-term performance of the FRP bars currently available on the market and for quality control by manufacturers. Statistical analysis using independent samples t-test and one-way analysis of variance revealed that the manufacturing parameters have a significant effect on the mechanical characteristics and alkaline resistance of FRP bars. In particular, the results show that the FRP bars manufactured with the same parameters and fiber types but by different fiber manufacturers with different fiber sizings and resin systems produced bars with totally different strength properties and durability performance in an alkaline environment. Vinyl ester resin and silane-sized fiber was the most compatible resin system and produced a more durable glass-FRP bar, while the epoxy resin yielded more durable basalt- and carbon-FRP bars. This paper also describes a procedure for and a criterion of the optimum manufacturing parameters to achieve specific mechanical properties and durability performance with FRP bars.


Statistics for USQ ePrint 41147
Statistics for this ePrint Item
Item Type: Article (Commonwealth Reporting Category C)
Refereed: Yes
Item Status: Live Archive
Faculty/School / Institute/Centre: Current - Faculty of Health, Engineering and Sciences - School of Civil Engineering and Surveying (1 Jul 2013 -)
Faculty/School / Institute/Centre: Current - Institute for Advanced Engineering and Space Sciences - Centre for Future Materials (1 Jan 2017 -)
Date Deposited: 05 Feb 2021 05:03
Last Modified: 11 Feb 2021 03:34
Uncontrolled Keywords: Alkalinity, Fabrics, Material durability, Carbon fibers, Volcanic deposits, Fiber reinforced concrete, Parameters (statistics), Load and resistance factor design
Fields of Research (2008): 09 Engineering > 0905 Civil Engineering > 090506 Structural Engineering
09 Engineering > 0912 Materials Engineering > 091202 Composite and Hybrid Materials
Fields of Research (2020): 40 ENGINEERING > 4005 Civil engineering > 400510 Structural engineering
40 ENGINEERING > 4016 Materials engineering > 401602 Composite and hybrid materials
Socio-Economic Objectives (2008): E Expanding Knowledge > 97 Expanding Knowledge > 970109 Expanding Knowledge in Engineering
E Expanding Knowledge > 97 Expanding Knowledge > 970110 Expanding Knowledge in Technology
Socio-Economic Objectives (2020): 28 EXPANDING KNOWLEDGE > 2801 Expanding knowledge > 280110 Expanding knowledge in engineering
Identification Number or DOI: https://doi.org/10.1061/(ASCE)CC.1943-5614.0001009
URI: http://eprints.usq.edu.au/id/eprint/41147

Actions (login required)

View Item Archive Repository Staff Only