TOWARD REAL-TIME CONTROL OF SURFACE IRRIGATION

A Dissertation Submitted by

KANYA LAL KHATRI

FOR THE AWARD OF
DOCTOR OF PHILOSOPHY
2007
To my wife and our daughters with Love

Thank you very much.

Kanya L Khatri
Toowoomba Queensland
4350 Australia
ABSTRACT

The performance of surface irrigation is a function of the field design, infiltration characteristic of the soil, and the irrigation management practice. However, the complexity of the interactions makes it difficult for irrigators to identify optimal design or management practices. The infiltration characteristic of the soil is the most crucial of all the factors affecting the performance of surface irrigation and both spatial and temporal variations in the infiltration characteristic are a major physical constraint to achieving higher irrigation application efficiencies. Real-time optimisation and control has the potential to overcome these spatial and temporal variations and return highly significant improvements in performance. Calculation of the infiltration parameters from irrigation advance data is now the preferred method. If the process is to be included in a real time control system it must be done accurately, reliably and rapidly, and with a minimum of field data. Substantial work has been directed towards developing methods to estimate the infiltration characteristics of soil from irrigation advance data. However, none of the existing methods are entirely suitable for use in real time control. The greatest limitation is that they are data intensive and or unreliable and provide soil infiltration properties after an irrigation event.

A simple real-time control system for furrow irrigation is proposed that: predicts the infiltration characteristics of the soil in real-time using data measured during an irrigation event, simulates the irrigation, and determines the optimum time to cut-off for that irrigation. The basis of the system is a new method for the Real-time Estimation of the Infiltration Parameters (REIP) under furrow irrigation, developed during this research study, and that uses a model infiltration curve, and a scaling process to predict the infiltration characteristics for each furrow and each irrigation event. The underlying hypothesis for the method is that the shape of the infiltration characteristic for a particular field or soil is relatively constant (across the field and with time), despite variations in the magnitude of the infiltration rate or amount. A typical furrow in the field is selected for evaluation (known as the model furrow) and its infiltration parameters \((a, k, f_o)\) in the Kostiakov–Lewis equation are determined by a model such as INFILT or IPARM using inflow, advance and runoff.
data. Subsequently the infiltration parameters for this model furrow can be scaled to give the cumulative infiltration curves for the whole field. In this process a scaling factor \(F \) is formulated from rearrangement of the volume balance equation and is calculated for each furrow/event using the model infiltration parameters and the single advance point. The performance of each furrow can then be simulated and optimised using an appropriate simulation model to determine the preferred time to cut-off.

Using this new method, infiltration parameters were calculated for two different fields T & C. The SIRMOD simulation model was then used to simulate irrigation performance (application efficiency, requirement efficiency and uniformity) under different model strategies. These strategies were framed to assess the feasibility of and demonstrate the gains from the real-time control strategy. The infiltration evaluation results revealed that the infiltration curves produced by the proposed method were of similar shape and hence gave a distribution of cumulative depths of infiltration for the whole field that was statistically equivalent to that given using the complete set of advance data for each furrow. The advance trajectories produced by the proposed method also matched favourably to the measured advances.

The simulation results showed firstly that the scaled infiltration gave predictions of the irrigation performance similar to the actual performance. They also indicated that by adopting the simple real time control system, irrigation application efficiencies for the two fields could be improved from 76% for field T and 39% for field C (under usual farm management) to 83% and 70% for the fields T & C, respectively. Savings of 1239 m\(^3\) in the total volume of water applied per irrigation over the area of 7.1 ha of both fields were indicated, which can be used beneficially to grow more crop. The proposed real-time control system is shown to be feasible. It requires few data for its operation and provides the infiltration characteristics for each furrow without significant loss of accuracy. The irrigation performance is improved greatly from that achieved under current farmer management and a substantial reduction in the volume of water applied per irrigation is achievable.
CERTIFICATION OF DISSERTATION

I certify that the ideas, experimental work, results, analyses and conclusions reported in this dissertation are entirely my own effort, except where otherwise acknowledged. I also certify that the work is original and has not been previously submitted for any other award, except where otherwise acknowledged.

20/12/2007

__________________________ ___________________
Signature of Candidate Date
(Engineer Kanya Lal)

ENDORSEMENT

____________________________ ___________________
Signature of Principal Supervisor Date
(Professor Rod Smith)

____________________________ ___________________
Signature of Associate Supervisor Date
(Professor Steven Raine)
PREFACE

All of work reported herein is the original work of the author, contributing toward development of a practical real-time control system for furrow irrigation. Data on furrow irrigation advance for different soils analysed under this study were provided by the National Centre for Engineering in Agriculture (NCEA), USQ, Toowoomba.

Evaluation of methods for determining infiltration characteristics under different furrow characteristics and a range of flow rates and soil types is original and has been published as Khatri & Smith (2005). The new method developed for determining the soil infiltration characteristics from a single advance point in real-time, in conjunction with the new idea of model infiltration curve is novel. This has been published as Khatri & Smith (2006). Evaluation of the method, evaluation of different management strategies to assess the benefits from a simple real-time control and the conclusions reached are all original. This evaluation is being published as Khatri & Smith (2007).

Publications and national or international conference presentations arising from the work reported in the dissertation are listed below.

Khatri, K.L. and Smith, R.J., 2007. Toward a simple real-time control system for efficient management of furrow irrigation. Irrigation and Drainage (In press)

ACKNOWLEDGEMENTS

A PhD dissertation is seldom produced in isolation and in the completion of this thesis I am deeply grateful to a large number of people who have helped me in achieving this dream. First, my utmost appreciation goes to my academic adviser and principal research supervisor Professor Rod Smith. He accepted me into his environment and guided me through with unlimited patience and energy. He has always been ready to discuss new ideas and his wisdom has time and again helped me get on the right track. My respect for him as a researcher, engineer and human being is unparalleled. His support, guidance and advice have been invaluable and deserve a special recognition.

Special thanks to my associate supervisor Professor Steven Raine whose invaluable technical advice is highly cherished. Big thank you Steven and Rod, You will always be my role models. I do appreciate the general support of USQ Faculty of Engineering and Surveying and Student Services staff during the course of my research. Thanks to Dr. Rabi Misra for valuable discussions during this study.

I acknowledge the support of the Cooperative Research Center for Irrigation Futures (CRC IF) and Pakistan Government for funding the scholarships and operational costs for this research. The data used in this study were provided by the National Centre for Engineering in Agriculture (NCEA) at the University of Southern Queensland and are greatly appreciated.

Gratitude to my wife and our children, parents, sisters and brothers for their love, support and patience throughout this long endeavour. Lastly I would like to thank my friends including Tek Nrayan, Kumaran, Jyotiprakash, Amjad, Elizabeth McCarthy and Malcolm Gillies who offered the wonderful encouragement.

Khatri, Kanya Lal
28th February 2007
NOTATION

\(A_o \) Cross sectional area of flow at the upstream end of the field (m\(^2\))

\(E_a \) Application efficiency (percent)

\(W_s \) Volume of water stored in the root-zone (m\(^3\))

\(W_f \) Volume of water delivered to the field (m\(^3\))

\(R_f \) Volume of water lost as run-off (m\(^3\))

\(D_f \) Volume of water lost as deep percolation below the root-zone (m\(^3\))

\(E_r, E_s \) Requirement or storage efficiency (percent)

\(W_r \) Volume of water stored in the root-zone (m\(^3\))

\(W_d \) Volume of water required in the root-zone

\(DU, E_d \) Distribution uniformity (percent)

\(W_l \) An average infiltrated depth of water in the lowest one quarter of the field (m)

\(W_a \) Average infiltrated depth of water over the whole field (m)

\(Q, Q_o \) Inflow to furrow or bay (m\(^3\)/min)

\(t \) Time of the advance phase of the irrigation (minute)

\(A_x \) Volume stored on the surface of the furrow or bay (m\(^3\))

\(Z_{req} \) Desired depth of application prior to irrigation (mm)

\(Z \) Infiltrated depth (mm)

\(a, k, and f_o \) Modified Kostiakov infiltration parameters (constants)

\(V_l \) Volume infiltrated (m\(^3\))

\(V_S \) Volume temporarily stored on the soil surface (m\(^3\))

\(V_R \) Volume of run-off (m\(^3\))

\(x \) Advance distance (m)

\(\bar{A} \) Average cross sectional area of the surface flow

\(\sigma_y \) Surface storage shape factor (Constant)

\(\sigma_z \) Sub-surface shape factor for the model infiltration function

\(p \) and \(r \) Advance power function fitted parameters (constants)

\(I \) Cumulative infiltration (m\(^3\)/m)

\(\tau \) Infiltration opportunity time (min)

\(Q_{out} \) Irrigation runoff from end of field (m\(^3\)/minute)
\(c\) Constant of USDA infiltration model (0.007)

\(F, \theta\) Upadhyaya and Raghuwanshi fitted parameters

\(x_{max}\) Maximum possible advance distance (m)

\(Z_{CR}\) Depth of water infiltrated into soil cracks

\(S, A\) Philip and Farrell modified empirical parameters

\(I_s\) Scaled infiltration (\(m^3/m\))

\(t_{co}\) cut-off time (min)

\(t_{measured}\) Measured advance time (minute)

\(t_{simulated}\) Simulated advance time (minute)
TABLE OF CONTENTS

ABSTRACT ... i
CERTIFICATION OF DISSERTATION ... iv
PREFACE ... viii
ACKNOWLEDGEMENTS ... vii
NOTATION ... viii
TABLE OF CONTENTS .. x
LIST OF FIGURES .. xv
LIST OF TABLES ... xvii

Chapter 1 Introduction .. 1
1.1 Background ... 1
1.2 Surface irrigation Techniques ... 5
 1.2.1 Border irrigation.. 5
 1.2.2 Basin irrigation... 6
 1.2.3 Furrow irrigation.. 6
1.3 Overview of Research ... 8
 1.3.1 Research hypothesis ... 8
 1.3.2 Key issues identified for investigation .. 9
 1.3.3 Specific objectives of research .. 10
1.4 Project outcomes/significance .. 12
1.5 Structure of Dissertation ... 13

Chapter 2 Surface Irrigation and Real-time Control 16
2.1 Introduction .. 16
2.2 Unsteady flow equations ... 16
 2.2.1 Complete hydrodynamic equations ... 16
 2.2.2 Zero-inertia approximation .. 19

PhD Dissertation
Page x
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.2.3 Kinematic wave approximation</td>
<td>20</td>
</tr>
<tr>
<td>2.3 Surface Irrigation Hydraulics</td>
<td>21</td>
</tr>
<tr>
<td>2.4 Performance measures of surface irrigation</td>
<td>25</td>
</tr>
<tr>
<td>2.4.1 Application efficiency</td>
<td>26</td>
</tr>
<tr>
<td>2.4.2 Requirement efficiency</td>
<td>27</td>
</tr>
<tr>
<td>2.4.3 Distribution uniformity</td>
<td>27</td>
</tr>
<tr>
<td>2.4.4 Interaction between performance measures</td>
<td>28</td>
</tr>
<tr>
<td>2.5 Surface irrigation modelling</td>
<td>29</td>
</tr>
<tr>
<td>2.6 Existing Models</td>
<td>32</td>
</tr>
<tr>
<td>2.7 Previous studies on Model Performance</td>
<td>33</td>
</tr>
<tr>
<td>2.8 Real-time Control</td>
<td>34</td>
</tr>
<tr>
<td>2.9 Conclusion</td>
<td>38</td>
</tr>
<tr>
<td>Chapter 3 Estimation of Infiltration</td>
<td>40</td>
</tr>
<tr>
<td>3.1 Introduction</td>
<td>40</td>
</tr>
<tr>
<td>3.2 Infiltration</td>
<td>40</td>
</tr>
<tr>
<td>3.2.1 Factors influencing infiltration</td>
<td>42</td>
</tr>
<tr>
<td>3.3 Infiltration equations</td>
<td>45</td>
</tr>
<tr>
<td>3.3.1 Infiltration measurement</td>
<td>47</td>
</tr>
<tr>
<td>3.4 Previous studies to determine infiltration parameters from advance data</td>
<td>49</td>
</tr>
<tr>
<td>3.5 Conclusion</td>
<td>58</td>
</tr>
<tr>
<td>Chapter 4 Infiltration Variability</td>
<td>59</td>
</tr>
<tr>
<td>4.1 Introduction</td>
<td>59</td>
</tr>
<tr>
<td>4.2 Role of infiltration variability</td>
<td>59</td>
</tr>
<tr>
<td>4.3 Sources of infiltration variability</td>
<td>62</td>
</tr>
<tr>
<td>4.3.1 Inflow</td>
<td>62</td>
</tr>
<tr>
<td>4.3.2 Opportunity time</td>
<td>62</td>
</tr>
</tbody>
</table>
4.3.3 Wetted perimeter ... 62
4.3.4 Slope .. 63
4.3.5 Seasonal variability .. 63
4.4 Previous studies on infiltration variability 64
4.5 Conclusion .. 69

Chapter 5 Evaluation of Methods for Determining Infiltration from the Irrigation Advance ... 71

5.1 Introduction .. 71
5.2 Description of methods .. 73
 5.2.1 Two-point method ... 73
 5.2.2 INFILT ... 75
 5.2.3 Valiantzas one-point method ... 76
 5.2.4 Upadhyaya and Raghuwanshi .. 77
 5.2.5 Linear infiltration ... 78
 5.2.6 Shepard one point method .. 79
5.3 Evaluation .. 80
 5.3.1 Test data ... 80
 5.3.2 Analysis .. 82
5.4 Results and Discussion .. 83
 5.4.1 Two-point method ... 94
 5.4.2 INFILT ... 95
 5.4.3 Valiantzas one-point method ... 97
 5.4.4 Upadhyaya and Raghuwanshi .. 99
 5.4.5 Linear infiltration ... 99
 5.4.6 Shepard one-point method .. 100
5.5 Conclusions .. 100
Chapter 6 Model for Real-time Prediction of Soil Infiltration Characteristics

6.1 Introduction

6.2 Description of the Proposed Model REIP (Real-time estimation of infiltration parameters)

6.3 Testing / Evaluation of Model

6.3.1 Evaluating soil infiltration characteristics

6.3.2 INFILT Calculations

6.3.3 REIP Calculations

6.3.4 Prediction of advance curves

6.4 Discussion on Results of Evaluation

6.4.1 Comparison of infiltration curves

6.4.2 Comparison of advance curves

6.4.3 Discussion on REIP method

6.5 Conclusions

Chapter 7 Simulation and Modelling of Performance for a Simple Real-time Control of Furrow Irrigation

7.1 Introduction

7.2 Description of the proposed real-time control system

7.3 Analysis

7.3.1 Irrigation performance and infiltration data

7.3.2 Simulation methodology

7.4 Simulation Model strategies

7.5 Results and Discussion

7.5.1 Advance trajectories

7.5.2 Irrigation Performance
7.5.3 Demonstrating water savings from real-time control 155
7.6. Conclusions .. 156

Chapter 8 Conclusions and Recommendations .. 158

8.1 Review of research ... 158
8.2 Major outcomes and key findings .. 159
 8.2.1 Evaluation of current infiltration estimation techniques 159
 8.2.2 Development and evaluation of a real-time infiltration model (REIP).... 161
 8.2.3 Demonstrating the potential gains from simple real-time control 163
8.3 Practical application of simple real-time control 164
 8.3.1 Introduction ... 164
 8.3.2 Characterisation of field ... 165
 8.3.3 Control and measurement of inflow .. 166
 8.3.4 Estimation of infiltration .. 167
 8.3.5 Simulation and optimisation ... 167
8.4 Other recommendations for further research ... 167

References .. 169

Appendix A: ... 185
Appendix B: ... 223
Appendix C: ... 240
LIST OF FIGURES

Figure 1-1 Time-space trajectory of water during a surface irrigation showing its advance, wetting, depletion and recession phases 3

Figure 1-2 Siphons supplying furrow irrigated cotton Darling Downs, Queensland... 7

Figure 2-1 Elementary slice through surface and subsurface profiles............. 18

Figure 2-2 Typical longitudinal infiltration profiles and the corresponding application and requirement efficiencies and distribution uniformities ... 29

Figure 5-1 Comparison of cumulative infiltration curves 84

Figure 5-2 Comparison of advance curves ... 89

Figure 5-3 Cumulative infiltration for longer times (advance time is 441 min) 95

Figure 5-4 Effect of varying the value of C in SCS equation 98

Figure 6-1 INFILT screen shots.. 111

Figure 6-2 Cumulative infiltration curves for field T ... 115

Figure 6-3 Cumulative infiltration curves for field C ... 116

Figure 6-4 Comparison of scaled and actual cumulative infiltration curves for individual furrows ... 118

Figure 6-5 Scaled cumulative infiltration vs actual cumulative infiltration 120

Figure 6-6 Mean of the scaled cumulative infiltrations vs the mean of actual cumulative infiltrations at various times for the 27 irrigation events at field T ... 122

Figure 6-7 Comparison of individual advance trajectories for field T 123

Figure 6-8 Effect of using a different model furrow for field T 125

Figure 6-9 Effect of using a different model furrow for field C 126
Figure 6-10 Relationship between scaling factor values at different advance points for field C ... 131

Figure 7-1 Example of SIRMOD screen showing the data required for simulation under infiltration functions tab .. 138

Figure 7-2 SIRMOD screen showing the data required for simulation under field geometry tab .. 139

Figure 7-3 SIRMOD screen showing the furrow geometry required for simulation under flow cross-section tab .. 140

Figure 7-4 SIRMOD screen showing the columns to be ticked during simulation operation ... 141

Figure 7-5 SIRMOD screen showing the simulation process in operation 142

Figure 7-6 SIRMOD screen showing the completed simulation process and run-off hydrograph ... 143

Figure 7-7 Measured advance curves for field T ... 145

Figure 7-8 Simulated advance curves for field T using the scaled infiltration.... 145

Figure 7-9 Comparison of measured and simulated advance trajectories for sample furrows ... 146

Figure 7-10 Comparison of final advance times for measured and simulated advance trajectories ... 147

Figure 7-11 Comparison of irrigation performance results under model strategies 1(actual) and 2(scaled) for field T ... 150

Figure 7-12 Comparison of irrigation performance simulation results under model strategies 5(scaled) and 6(actual) for field T 154
LIST OF TABLES

Table 2.1 Irrigation performance efficiencies under different management practices. ... 35
Table 5.1 Showing summary of data sets.. 82
Table 6.1 Summary of data sets for field T... 108
Table 6.2 Summary of data sets for field C ... 109
Table 6.3 Mean of the actual and the scaled infiltration depths at various times up to advance time for field T... 121
Table 6.4 Power curve $p \& r$ values for fields T and C 109
Table 6.5 Scaling factor values calculated along the length of furrow for field C... 130
Table 7.1 Summary of irrigation performance under different modelling strategies for field T (means of 27 events)................................. 148
Table 7.2 Summary of irrigation performance under different modelling strategies for field C (means of 17 events). 149
Table 7.3 Volume of water applied and individual irrigation performance for field T under real-time control strategies 5 & 6.......................... 153
Table 7.4 Summary of volumes of water applied to fields T and C under usual farm management and real-time control............................... 156