Synthesis and Properties Investigation of Thiophene-aromatic Polyesters: Potential Alternatives for the 2,5-Furandicarboxylic Acid-based Ones

Wang, Jing-Gang and Zhang, Xiao-Qing and Sheng, Ang and Zhu, Jin and Song, Ping-An ORCID: https://orcid.org/0000-0003-1082-652X and Wang, Hao and Liu, Xiao-Qing (2020) Synthesis and Properties Investigation of Thiophene-aromatic Polyesters: Potential Alternatives for the 2,5-Furandicarboxylic Acid-based Ones. Chinese Journal of Polymer Science, 38. pp. 1082-1091. ISSN 0256-7679


Abstract

In order to explore new substitutes for 2,5-furandicarboxylic acid (FDCA) or poly(ethylene 2,5-furandicarboxylate) (PEF) and try to develop more ideal bio-based polyesters, several thiophene-aromatic polyesters (PETH, PPTH, PBTH, and PHTH) were synthesized from dimethyl thiophene-2,5-dicarboxylate (DMTD) and different diols, including ethylene glycol, 1,3-propanediol, 1,4-butanediol, and 1,6-hexanediol. The chemical structures of obtained polyesters were confirmed by nuclear magnetic resonance spectroscopy (1H-NMR and 13C-NMR). Determined by GPC measurement, their average molecular weight (Mw) varied from 5.22 × 104 g/mol to 7.94 × 104 g/mol with the molar-mass dispersity of 1.50–2.00. Based on the DSC and TGA results, the synthesized polyesters PETH, PPTH, and PBTH displayed comparable or even better thermal properties when compared with their FDCA-based analogues. From PETH to PHTH, their Tg varied from 64.6 °C to −1 ×C while T5% ranged from 409 °C to 380 °C in nitrogen atmosphere. PETH showed elongation at break as high as 378%, tensile strength of 67 MPa, and tensile modulus of 1800 MPa. Meanwhile, the CO2 and O2 barrier of PETH was 12.0 and 6.6 folds higher than those of PET, respectively, and similar to those of PEF. Considering the overall properties, the synthesized thiophene-aromatic polyesters, especially PETH, showed great potential to be used as an excellent bio-based packaging material in the future.


Statistics for USQ ePrint 40978
Statistics for this ePrint Item
Item Type: Article (Commonwealth Reporting Category C)
Refereed: Yes
Item Status: Live Archive
Faculty/School / Institute/Centre: Current - Institute for Advanced Engineering and Space Sciences - Centre for Future Materials (1 Jan 2017 -)
Faculty/School / Institute/Centre: Current - Institute for Advanced Engineering and Space Sciences - Centre for Future Materials (1 Jan 2017 -)
Date Deposited: 01 Feb 2021 01:55
Last Modified: 10 Feb 2021 05:49
Uncontrolled Keywords: 2,5-Furandicarboxylic acid (FDCA); 2,5-Thiophenedicarboxylic acid (TDCA); Barrier properties; Bio-based polyesters
Fields of Research (2008): 09 Engineering > 0912 Materials Engineering > 091202 Composite and Hybrid Materials
09 Engineering > 0912 Materials Engineering > 091209 Polymers and Plastics
09 Engineering > 0912 Materials Engineering > 091205 Functional Materials
Fields of Research (2020): 40 ENGINEERING > 4016 Materials engineering > 401605 Functional materials
40 ENGINEERING > 4016 Materials engineering > 401609 Polymers and plastics
Socio-Economic Objectives (2008): E Expanding Knowledge > 97 Expanding Knowledge > 970109 Expanding Knowledge in Engineering
E Expanding Knowledge > 97 Expanding Knowledge > 970103 Expanding Knowledge in the Chemical Sciences
Socio-Economic Objectives (2020): 28 EXPANDING KNOWLEDGE > 2801 Expanding knowledge > 280110 Expanding knowledge in engineering
Identification Number or DOI: https://doi.org/10.1007/s10118-020-2438-2
URI: http://eprints.usq.edu.au/id/eprint/40978

Actions (login required)

View Item Archive Repository Staff Only