A bio-based ionic complex with different oxidation states of phosphorus for reducing flammability and smoke release of epoxy resins

Fang, Fang and Huo, Siqi and Shen, Haifeng and Ran, Shiya and Wang, Hao and Song, Pingan ORCID: https://orcid.org/0000-0003-1082-652X and Fang, Zhengping (2020) A bio-based ionic complex with different oxidation states of phosphorus for reducing flammability and smoke release of epoxy resins. Composites Communications, 17. pp. 104-108. ISSN 2452-2139


Abstract

Developing high efficient, environmentally friendly and bio-based flame retardants for combustible polymers has gained increasing interest. Herein, a novel highly efficient biomass-derived flame retardant (EHPP@PA) with different oxidation state phosphorus is prepared via neutralization of phytic acid (PA) and phenylphosphonate-based compound (EHPP). Due to synergistic effect between PA and EHPP, the incorporation of EHPP@PA significantly improves the flame-retardant performances of epoxy resin (EP), bringing about 64% reduction in peak heat release rate (pHRR) and 16% reduction in total heat release (THR). Additionally, EP/EHPP@PA also displays excellent smoke suppression performance, exhibiting 45% reduction in peak CO production (pCOP), 61% reduction in peak smoke release production rate (pSPR), and 21% reduction in total smoke production (TSP). The flame-retardant mechanism of EHPP@PA is further investigated, indicating that EHPP@PA effectively exerts flame-retardant effect in the condensed and gaseous phases during combustion. In the condensed phase, phytic acid facilitates the formation of a protective char shield, while in the gas phase, EHPP releases PO· and NO· to quench active radicals and inhibits the combustion.


Statistics for USQ ePrint 40951
Statistics for this ePrint Item
Item Type: Article (Commonwealth Reporting Category C)
Refereed: Yes
Item Status: Live Archive
Faculty/School / Institute/Centre: Current - Institute for Advanced Engineering and Space Sciences - Centre for Future Materials (1 Jan 2017 -)
Faculty/School / Institute/Centre: Current - Institute for Advanced Engineering and Space Sciences - Centre for Future Materials (1 Jan 2017 -)
Date Deposited: 28 Jan 2021 05:10
Last Modified: 29 Jan 2021 05:02
Uncontrolled Keywords: Epoxy resin; Ionic complexation; Phosphorus containing flame retardant
Fields of Research (2008): 09 Engineering > 0912 Materials Engineering > 091202 Composite and Hybrid Materials
09 Engineering > 0912 Materials Engineering > 091209 Polymers and Plastics
09 Engineering > 0912 Materials Engineering > 091205 Functional Materials
Fields of Research (2020): 40 ENGINEERING > 4016 Materials engineering > 401605 Functional materials
40 ENGINEERING > 4016 Materials engineering > 401609 Polymers and plastics
40 ENGINEERING > 4016 Materials engineering > 401602 Composite and hybrid materials
Socio-Economic Objectives (2008): E Expanding Knowledge > 97 Expanding Knowledge > 970109 Expanding Knowledge in Engineering
E Expanding Knowledge > 97 Expanding Knowledge > 970103 Expanding Knowledge in the Chemical Sciences
Socio-Economic Objectives (2020): 28 EXPANDING KNOWLEDGE > 2801 Expanding knowledge > 280105 Expanding knowledge in the chemical sciences
28 EXPANDING KNOWLEDGE > 2801 Expanding knowledge > 280110 Expanding knowledge in engineering
Funding Details:
Identification Number or DOI: https://doi.org/10.1016/j.coco.2019.11.011
URI: http://eprints.usq.edu.au/id/eprint/40951

Actions (login required)

View Item Archive Repository Staff Only