High‐performance polymeric materials through hydrogen‐bond cross‐linking

Song, Pingan ORCID: https://orcid.org/0000-0003-1082-652X and Wang, Hao (2020) High‐performance polymeric materials through hydrogen‐bond cross‐linking. Advanced Materials, 32 (18):1901244. ISSN 0935-9648


Abstract

It has always been critical to develop high‐performance polymeric materials with exceptional mechanical strength and toughness, thermal stability, and even healable properties for meeting performance requirements in industry. Conventional chemical cross‐linking leads to enhanced mechanical strength and thermostability at the expense of extensibility due to mutually exclusive mechanisms. Such major challenges have recently been addressed by using noncovalent cross‐linking of reversible multiple hydrogen‐bonds (H‐bonds) that widely exist in biological materials, such as silk and muscle. Recent decades have witnessed the development of many tailor‐made high‐performance H‐bond cross‐linked polymeric materials. Here, recent advances in H‐bond cross‐linking strategies are reviewed for creating high‐performance polymeric materials. H‐bond cross‐linking of polymers can be realized via i) self‐association of interchain multiple H‐bonding interactions or specific H‐bond cross‐linking motifs, such as 2‐ureido‐4‐pyrimidone units with self‐complementary quadruple H‐bonds and ii) addition of external cross‐linkers, including small molecules, nanoparticles, and polymer aggregates. The resultant cross‐linked polymers normally exhibit tunable high strength, large extensibility, improved thermostability, and healable capability. Such performance portfolios enable these advanced polymers to find many significant cutting‐edge applications. Major challenges facing existing H‐bond cross‐linking strategies are discussed, and some promising approaches for designing H‐bond cross‐linked polymeric materials in the future are also proposed.


Statistics for USQ ePrint 40950
Statistics for this ePrint Item
Item Type: Article (Commonwealth Reporting Category C)
Refereed: Yes
Item Status: Live Archive
Additional Information: Permanent restricted access to Published version, in accordance with the copyright policy of the publisher.
Faculty/School / Institute/Centre: Current - Institute for Advanced Engineering and Space Sciences - Centre for Future Materials (1 Jan 2017 -)
Faculty/School / Institute/Centre: Current - Institute for Advanced Engineering and Space Sciences - Centre for Future Materials (1 Jan 2017 -)
Date Deposited: 27 Jan 2021 23:48
Last Modified: 29 Jan 2021 05:01
Uncontrolled Keywords: polymeric materials; hydrogen-bond cross linking
Fields of Research (2008): 09 Engineering > 0912 Materials Engineering > 091202 Composite and Hybrid Materials
09 Engineering > 0912 Materials Engineering > 091209 Polymers and Plastics
09 Engineering > 0912 Materials Engineering > 091205 Functional Materials
Fields of Research (2020): 40 ENGINEERING > 4016 Materials engineering > 401605 Functional materials
40 ENGINEERING > 4016 Materials engineering > 401609 Polymers and plastics
40 ENGINEERING > 4016 Materials engineering > 401602 Composite and hybrid materials
Socio-Economic Objectives (2008): E Expanding Knowledge > 97 Expanding Knowledge > 970109 Expanding Knowledge in Engineering
E Expanding Knowledge > 97 Expanding Knowledge > 970103 Expanding Knowledge in the Chemical Sciences
Socio-Economic Objectives (2020): 28 EXPANDING KNOWLEDGE > 2801 Expanding knowledge > 280105 Expanding knowledge in the chemical sciences
28 EXPANDING KNOWLEDGE > 2801 Expanding knowledge > 280110 Expanding knowledge in engineering
Funding Details:
Identification Number or DOI: https://doi.org/10.1002/adma.201901244
URI: http://eprints.usq.edu.au/id/eprint/40950

Actions (login required)

View Item Archive Repository Staff Only