From nanometre to millimetre: a range of capabilities for plasma-enabled surface functionalization and nanostructuring

Baranov, O. and Levchenko, I. and Bell, J. M. and Lim, J. W. M. and Huang, S. and Xu, L. and Wang, B. and Aussems, D. U. B. and Xu, S. and Bazaka, K. (2018) From nanometre to millimetre: a range of capabilities for plasma-enabled surface functionalization and nanostructuring. Materials Horizons, 5 (5). pp. 765-798. ISSN 2051-6347


Abstract

Driven by the innate tendency of the system to attain a local energy minimum, self-organization enables the creation of complex systems out of relatively simple parts and elements. The ability to form hierarchical, multicomponent systems that may be difficult, or even impossible, to fabricate using pre-set, template-enabled processes makes self-organisation very attractive for the synthesis and assembly of advanced material systems across multiple length scales. Yet, driving and controlling such self-organisation processes is not a trivial task as they often arise from a complex interplay of physical and chemical processes. These in turn depend on the environment in which self-organisation takes place. In this topical review, we focus on one such environment and outline unique opportunities, salient characteristics and challenges presented by self-organization on surfaces exposed to partially ionised gases, i.e. plasmas. Using a select number of recent examples, we aim to show how salient features of plasma environments, particularly high fluxes of energy and matter from the plasma to the surface, enable functionalization and growth of complex nanostructures and metamaterials via self-organization on plasma-exposed surfaces. We will show how by controlling different physical and chemical parameters of the plasma environment and how it interacts with surfaces, it is possible to control self-organization processes at multiple length scales, making it a promising enabling platform for nanosynthesis. We will discuss examples starting from the self-driven growth of perfect crystalline lattices, such as nano-diamonds and graphenes at the nanoscale, all the way to template- and pattern-free synthesis of large, highly ordered arrays of nanostructures at millimetre and even centimetre scales. We will outline the key enabling features of plasmas that drive these processes at respective scales, focusing predominantly on plasma-induced electric fields at the surface or in the plasma-nanostructure sheath, as well as charge-related effects. The outlook section summarizes advantages of plasma-driven self-organization, and outlines principal challenges and opportunities for the development of this field.


Statistics for USQ ePrint 39352
Statistics for this ePrint Item
Item Type: Article (Commonwealth Reporting Category C)
Refereed: Yes
Item Status: Live Archive
Additional Information: Files associated with this item cannot be displayed due to copyright restrictions.
Faculty/School / Institute/Centre: No Faculty
Faculty/School / Institute/Centre: No Faculty
Date Deposited: 28 Sep 2020 04:45
Last Modified: 30 Sep 2020 02:33
Uncontrolled Keywords: encapsulated magnetic nanoparticles; vertically oriented graphene; chemical-vapor-deposition; aligned carbon nanotubes; atmospheric-pressure; self-organization; arc-discharge; large-area; pattern-formation; electric-field
Fields of Research (2008): 03 Chemical Sciences > 0399 Other Chemical Sciences > 039999 Chemical Sciences not elsewhere classified
Fields of Research (2020): 34 CHEMICAL SCIENCES > 3499 Other chemical sciences > 349999 Other chemical sciences not elsewhere classified
Identification Number or DOI: https://doi.org/10.1039/c8mh00326b
URI: http://eprints.usq.edu.au/id/eprint/39352

Actions (login required)

View Item Archive Repository Staff Only