Agricultural intensification and ecosystem function in a brigalow (Acacia harpophylla) landscape: implications for ecosystem services

Stuart James Collard (B.Sc. Hons)

A thesis submitted for the award of Doctor of Philosophy

University of Southern Queensland

2007
ABSTRACT

Agricultural intensification, involving habitat fragmentation and modification, typically leads to a decline in biodiversity and ecosystem function. While most studies concentrate on remnant patches, the less intensively managed components of agricultural landscapes may also provide biodiversity values and ecosystem services. This study examines the contribution of different categories of land management to biodiversity and ecosystem function along a gradient of agricultural intensification. Differences within these land management categories are also examined. Research results are interpreted in the broad context of ecosystem services and their resilience in agro-ecosystems.

This research was conducted in the Brigalow Belt bioregion of southern Queensland near Dalby, Australia. Twenty-two small remnant brigalow (*Acacia harpophylla*) patches were selected and sampling sites established at the core and edge within the remnant and at the core and edge of an adjacent area of the agricultural matrix. Spatial information about remnant brigalow patch characteristics and attributes of the surrounding landscape were determined using aerial photographs and geographic information systems. Soil carbon concentration and the composition and diversity of plant and bird communities were used as ecological indicators. A combination of univariate and multivariate analysis methods was employed to compare indicators between core and edge across four distinct land management categories along a gradient of intensification. Spatial information was used to aggregate soil carbon data and to model the effects of landscape context on biotic communities.

Small, fragmented brigalow remnants contained higher levels of biodiversity and soil carbon and were compositionally distinct compared with the surrounding agricultural matrix of grassland and cropland. Soil carbon levels declined with increasing land use modification, with even the most sensitive (labile) carbon fractions showing little sign of recovery in naturally regenerating grasslands. Plant diversity also decreased with increasing land use intensity; however, cultivated areas reverted to semi-natural grassland assemblages following the cessation of regular tillage. Bird communities were predictably higher in the more structurally and floristically complex remnant brigalow but, unlike soil and plant indicators, showed little variation among matrix land management categories. Relationships
for indicators measured across the vegetation-matrix boundary resembled a step function, with no detectable difference between core and edge in the same land management category. Plant and bird communities were influenced largely by landscape context variables, rather than measured local structural attributes of the vegetation.

Measured indicators in different land management categories along the intensification gradient showed distinct trends, with the nature of these relationships somewhat indicator-specific, particularly within the matrix. Different land management categories contained unique species assemblages, with all indicators higher in remnant brigalow. However, the significant contribution of secondary and regenerating grassland components of the agricultural matrix to biodiversity and ecosystem function are also highlighted. In particular, natural regeneration of plant communities in former arable lands, resulting in novel grassland ecosystems, suggests some degree of resilience in these systems and provides potential opportunities for enhancing biodiversity and ecosystem function. The observed similarity between core and edge for plants and soil carbon in both Brigalow and matrix suggests that land use boundaries are abrupt, with no detectable ecotone.

Results are discussed in the context of a state and transition model, enabling the conceptualization of changes between different land management categories caused by agricultural intensification and regeneration. The usefulness of the measured variables as potential indicators of ecosystem function in highly fragmented and modified agricultural landscapes is discussed. Inferences are made about the role that different landscape components play in maintaining overall ecosystem function and ecosystem services. A broader ecological approach to assessing biodiversity and ecosystem function in agro-ecosystems, that incorporates different land management categories and a range of ecological indicators, is recommended. In particular, the research suggests that the intrinsic value of the grassland components of the agricultural matrix for maintaining biodiversity and ecosystem function should be recognised and that natural remnant and semi-natural grassland components of the landscape should be maintained. This research is of particular value for balancing biodiversity conservation with production in brigalow landscapes and agro-ecosystems more generally.
CERTIFICATION OF DISSERTATION

I certify that the ideas, experimental work, results, analysis and conclusions reported in this dissertation are entirely my own effort, except where otherwise acknowledged. I also certify that the work is original and has not been previously submitted for any other award, except where otherwise acknowledged.

__ ________________
Signature of candidate Date

ENDORSEMENT

__ ________________
Signature of supervisor/s Date

__ ________________
 Date
ACKNOWLEDGEMENTS

I have many people to thank for their support throughout my PhD journey:

Thank you to my PhD supervisors Andy Le Brocque and Charlie Zammit. Thanks Charlie for your support, positive attitude, friendship and sage words during the initial and final stages and for making me think outside my comfort zone. Thanks Andy for willingly assuming the role of principal supervisor half way through and for making your time so freely available - your advice, patience and enthusiasm during thesis preparation are greatly appreciated.

Thank you to the past and present crew from the Land Use Research Centre and Australian Centre for Sustainable Catchments, who endured all of the tribulations and joys of the last few years with me. Special thanks to Fiona Morris, Simon Hill, David Grasby, Simon Attwood, Kellie Goodhew, Megan Brady, Pam Harris, Jayne Thorpe, Geoff Cockfield, Jerry Maroulis, Michelle Bouldin, Helen O’Callaghan, Marien Stark and Martine Maron. Thank you all for your support, stimulating conversations, inspiration and friendship. Special thanks to Kathryn Reardon-smith for her supportive words and field assistance in the early stages of the project, especially the 4am starts. I am grateful to Gareth Bramston, Jesse Soric, Pat McConnell, John Dearnaley, Andy Le Brocque, Melanie Bradley, Kate Reardon-Smith and Sarah Lewis for their enthusiastic field assistance.

Thanks to the technical and administrative staff from the Faculty of Sciences, who supported my research and were always willing to assist. These people include Debbie White, Pat McConnell, Chris DeByl, Phil Hallas and Oliver Kinder. Special thanks also to Ashley Plank for his statistical advice. Thanks to Ruth Hilton, Carla Hamilton and Christine Bartlett from the Office of Research and Higher Degrees for their assistance and administrative support during my candidature. Thanks to Alan House, Rod Fensham, Bruce Wilson, David Watson, Teresa Eyre, Scott Field, Armando Apan, Greg Ford and Bruce Lawrie for their guidance on technical matters at various stages of the research. Thanks to John Standle and other staff from Leslie Research Centre, Toowoomba for conducting all soil carbon analyses and for allowing me to use their drying ovens, soil grinders and other equipment.
Thanks to various editors for their insights and comments on draft papers and chapters, Andy Le Brocque, Charlie Zammit, Simon Lewis, Sarah Lewis, Martine Maron, Cliff Collard, Julia Playford, Anthony Whitbread, Joe Scanlan and Jerry Maroulis.

Thanks to the many landholders who allowed me to access their properties, despite adverse farming conditions and a turbulent political environment. Special thanks to Errol and Jewel Hartmann, Cliff Hartmann, Donny Chiverton, Kan and Denetta Achilles, Darryl and Suzette Handford, Neil and Andrea Radke, Robert and Pam Radke, Dalby Agricultural College, Royce Jensen, Peter and Tricia Morgan and to all others who granted me access to their properties.

Thanks and much love to my cherished partner and closest companion Sarah Lewis for moving to Queensland and her forbearance and unerring love during the past few years - I couldn’t have finished this without you Gorgeous. Thanks also to all my fabulous friends in Toowoomba and further a field for your support, the fun trips away and for putting up with my vagueness and absence from far too many social occasions. Thanks to my family for their love and support from afar – knowing that you were thinking about me provided great comfort.

I am particularly grateful for the generous financial support provided by the Australian Research Council through an Australian Postgraduate Award (Industry partners: DNR&M and QPWS). Additional funding and support for the project was provided by the Land Use Research Centre/ Australian Centre for Sustainable Catchments and the Faculty of Sciences at the University of Southern Queensland.
TABLE OF CONTENTS

ABSTRACT .. ii
CERTIFICATION OF DISSERTATION ... iv
ACKNOWLEDGEMENTS .. v
LIST OF FIGURES .. xi
LIST OF TABLES .. xii
PUBLICATIONS AND PRESENTATIONS .. xiii

CHAPTER 1: GENERAL INTRODUCTION AND LITERATURE REVIEW.... 1
1.1 Overview .. 2
1.2 Agricultural intensification .. 5
1.3 Ecosystem services .. 6
1.3.1 Theoretical basis for the concept ... 6
1.3.2 Ecosystem services in agro-ecosystems ... 10
1.3.3 Biodiversity, ecosystem function and agro-ecosystem services 11
1.4 Indicators of biodiversity and ecosystem function ... 16
1.5 Effects of agricultural intensification on biodiversity .. 19
1.5.1 Habitat modification ... 20
1.5.2 Habitat fragmentation ... 21
1.5.3 Edge effects ... 22
1.5.4 Matrix effects and landscape context ... 24
1.6 Research aims and questions ... 27
1.7 Thesis overview ... 29

CHAPTER 2: GENERAL METHODS AND LANDSCAPE INFORMATION . 31
2.1 Description of study area .. 32
2.1.1 The Brigalow Belt bioregion of Queensland ... 32
2.1.2 Brigalow vegetation communities and biology .. 32
2.1.3 Development history and regulation .. 33
2.2 Site selection ... 36
2.2.1 Study area description ... 37
2.2.2 Land use change in the study area 1945-2001 ... 38
2.2.3 Description of Brigalow study sites ... 40
2.3 Experimental design .. 43
2.3.1 Land management categories .. 43
2.3.2 Sampling locations .. 46
2.3.3 Ecological indicators of ecosystem function .. 47
2.4 General analysis procedures ... 48
 2.4.1 Univariate analyses ... 48
 2.4.2 Multivariate analyses ... 49
 2.4.3 Spatial data analyses ... 50

CHAPTER 3: SOIL CARBON, AGRICULTURAL INTENSIFICATION & THE
'LANDSCAPE CARBON MANAGEMENT INDEX' .. 51
3.1 Introduction ... 52
 3.2 Materials and methods .. 55
 3.2.1 Site and soil description .. 55
 3.2.2 Study design ... 55
 3.2.3 Sampling and soil carbon analyses ... 56
 3.2.4 Carbon Management Index ... 57
 3.2.5 Landscape Carbon Management Index 57
 3.2.6 Statistical analyses .. 58
 3.3 Results .. 58
 3.3.1 Comparison of carbon concentrations 58
 3.3.2 Comparison of soil carbon between land management categories 59
 3.3.3 Residual levels of soil carbon and CMI, relative to Brigalow 61
 3.3.4 The landscape CMI – application across land management categories 62
 3.4 Discussion .. 63
 3.4.1 Summary of main findings .. 63
 3.4.2 Soil carbon decline in agro-ecosystems 63
 3.4.3 Response of SOM to land-use intensification 63
 3.4.4 Application of the CMI at a landscape scale 66
 3.4.5 Management options for enhancing soil carbon 68
 3.4.6 Sustainable carbon management .. 69
 3.5 Conclusions ... 70

CHAPTER 4: PLANT BIODIVERSITY AND AGRICULTURAL
INTENSIFICATION ... 71
4.1 Introduction .. 72
 4.2 Methods .. 76
 4.2.1 Study sites ... 76
 4.2.2 Vegetation sampling ... 77
 4.2.3 Statistical analyses ... 78
4.3 Results ... 80
 4.3.1 General floristic patterns ... 80
 4.3.2 Species richness and cover ... 81
 4.3.3 Comparison of functional groups ... 86
 4.3.4 Community composition ... 87
 4.3.5 The influence of landscape context .. 92
4.4 Discussion .. 94
 4.4.1 Responses of plant communities to agricultural intensification 94
 4.4.2 Edge effects ... 95
 4.4.3 Regeneration of former agricultural lands ... 97
 4.4.4 Influence of spatial features and landscape context 100
4.5 Conclusions ... 101

CHAPTER 5: BIRD BIODIVERSITY AND AGRICULTURAL INTENSIFICATION
5.1 Introduction .. 102
5.2 Methods .. 103
 5.2.1 Experimental design ... 108
 5.2.2 Bird surveys .. 108
 5.2.3 Habitat complexity ... 109
 5.2.4 Patch size and landscape information ... 110
 5.2.5 Statistical analyses ... 110
5.3 Results .. 113
 5.3.1 General bird community information ... 113
 5.3.2 Functional groups / foraging guilds .. 116
 5.3.3 Bird community composition .. 117
 5.3.4 Habitat complexity ... 119
 5.3.5 Influence of habitat complexity and landscape pattern on bird species richness, diversity and abundance ... 121
5.4 Discussion ... 122
 5.4.1 Avian assemblages in Brigalow remnants ... 123
 5.4.2 Land management categories and bird assemblages 126
 5.4.3 Habitat and landscape effects on richness, diversity and abundance 129
 5.4.4 Influence of patch size ... 130
5.5 Conclusions .. 133
CHAPTER 6: GENERAL DISCUSSION AND CONCLUSIONS 134
6.1 Overview .. 135
6.2 Changes in agricultural intensification 135
6.3 Impacts of agricultural intensification on ecological indicators 138
 6.3.1 Patterns across edges .. 140
6.4 Comparison of ecological indicators ... 142
 6.4.1 Landscape context effects .. 143
6.5 Agro-ecosystem function in the context of ecosystem services 144
 6.5.1 Biodiversity conservation and ecosystem function 145
 6.5.2 Agro-ecosystem resilience .. 147
 6.5.3 Interactions between adjacent land uses 148
6.6 Implications for management ... 151
6.7 Study limitations ... 153
6.8 Conclusions ... 155
6.9 Management recommendations and future directions 157
 6.9.1 Future research opportunities ... 159

REFERENCES .. 161

APPENDICES .. 192
Appendix 1: Spatial variables used in multiple linear stepwise regressions.... 192
Appendix 2: Raw soil carbon data across all experimental treatments 195
Appendix 3: Correlation matrix for spatial and structural variables 196
Appendix 4: Abundance and frequency data for all species 199
Appendix 5: Functional group classifications for plant species 205
Appendix 6: Multivariate analyses on percentage plant cover data 206
Appendix 7: Dissimilarity between land management categories 209
Appendix 8: Bird species accumulation .. 210
Appendix 9: Abundance and frequency of bird species 212
Appendix 10: Dissimilarity of structural attributes 217
LIST OF FIGURES

Figure 1.1. Possible relationships between biodiversity and ecosystem function12
Figure 1.2. Responses of indicators across land use edges ..24

Figure 2.1. Annual woody vegetation clearing, Brigalow Belt bioregion, 1988-200435
Figure 2.2. Location map of the study area ..37
Figure 2.3. Proportion of Brigalow, Grassland and Cultivation from 1945-200139
Figure 2.4. Aerial photograph of the study landscape ..41
Figure 2.5. Photographs of land management categories ..44
Figure 2.6. Schematic of a study site and the surrounding landscape46

Figure 3.1. Values for soil carbon in different land management categories60
Figure 3.2. Carbon management index for different land management categories62

Figure 4.1. Plant species richness in different land management categories83
Figure 4.2. Ground cover in different land management categories85
Figure 4.3. Ordination of plant data across experimental treatments87

Figure 5.1. Bird characteristics in different land management categories115
Figure 5.2. Two-dimensional ordination of bird abundance data117
Figure 5.3. Ordination of habitat complexity in each land management category120

Figure 6.1. Conceptualized pathways of agricultural intensification and regeneration136
Figure 6.2. Responses of indicators across habitat edges ..141
Figure 6.3. Intensification gradient and future land management trajectories152

Figure A6.1. Ordination of percent cover data across experimental treatments206
Figure A8.1. Species accumulation curves for pilot bird surveys211
LIST OF TABLES

Table 1.1. Hypotheses tested for each measured indicator .. 29

Table 2.1. Brigalow study site characteristics .. 42
Table 2.2. Number of study sites sampled and sampling locations 48

Table 3.1. Summary of the methods used for measuring soil carbon fractions 56
Table 3.2. Mean carbon concentrations across experimental treatments 58
Table 3.3. Two-way ANOVA results for carbon concentrations 59
Table 3.4. Residual carbon for the matrix land management categories 61
Table 3.5. Developing the landscape carbon management index 62
Table 3.6. Decline of soil carbon in Australian soils under cropping 65

Table 4.1. Variables used in stepwise regression models for plants 79
Table 4.2. Species richness in land management categories 81
Table 4.3. Species richness and cover in experimental treatments 81
Table 4.4. Two-way ANOVA results for vegetation attributes 82
Table 4.5. Mean species richness and cover for functional groups 86
Table 4.6. Analysis of Similarity for plant frequency data .. 88
Table 4.7. Species contributing to similarity within land management categories 89
Table 4.8. SIMPER results for plants in each land management category 91
Table 4.9. Summary of stepwise regression results ... 93

Table 5.1. Explanatory variables used in stepwise regression models for birds 112
Table 5.2. Proportion of bird functional groups in each land management category 116
Table 5.3. Analysis of Similarity results for bird abundance data 118
Table 5.4. SIMPER results for birds in each land management category 118
Table 5.5. Cover of habitat variables in each land management category 119
Table 5.6. ANOSIM on percent cover of habitat complexity data 121
Table 5.7. Summary of habitat models from multiple stepwise regressions 122

Table 6.1. Description of transitions between land management categories 136
Table 6.2. Comparison of ecological indicators across experimental treatments 139

Table A1.1. Spatial variables used for spatial context analyses 192
Table A2.1. Carbon concentrations at core and edge in study site 195
Table A3.1. Correlation table for landscape context variables 196
Table A3.2. Correlation table for structural variables ... 198
Table A4.1. Frequency and abundance data for all recorded plant species 199
Table A5.1. Functional group classifications for all recorded plant species 205
Table A6.1. Summary of Analysis of Similarity (ANOSIM) on percent cover data 207
Table A6.2. Species’ contribution to similarity within land management categories 208
Table A7.1. Results of a SIMPER analysis on frequency data 209
Table A9.1. Abundance and frequency of all recorded bird species 212
Table A10.1. SIMPER results for vegetation structural attributes 217
PUBLICATIONS

PRESENTATIONS

