IDENTIFICATION, VALIDATION, AND PYRAMIDING OF QUANTITATIVE TRAIT LOCI FOR RESISTANCE TO CROWN ROT IN WHEAT

A thesis submitted in fulfilment of the requirements for the degree of Doctor of Philosophy at the University of Southern Queensland

BY

William D. Bovill, B.Sc. (Hons)

Centre for Systems Biology
Department of Biological and Physical Sciences
Faculty of Sciences
University of Southern Queensland

2007
ABSTRACT

Crown rot (causal organism: *Fusarium pseudograminearum*) is a significant disease affecting wheat in Australia. Although first reported over 60 years ago, the disease has become more prevalent in recent years due to the adoption of minimum tillage and stubble retention practices. Breeding for resistance to crown rot is difficult – phenotypic selection, which is usually done at harvest, is time-consuming, expensive, and subject to between year variability due to sensitivity to environmental conditions. For these reasons, the coupling of molecular techniques with conventional plant breeding (marker-assisted selection) has the potential to more rapidly and reliably identify genomic regions that contribute to resistance. The objective of this study was to identify, validate, and pyramid quantitative trait loci (QTL) for resistance to crown rot present in a W21MMT70 x Mendos doubled haploid wheat population.

Replicated seedling trials were conducted in 2001, 2003, and 2005. In each seedling trial, W21MMT70 displayed partial resistance to crown rot whereas Mendos seedlings were susceptible. A bulked segregant analysis (BSA), using 390 simple sequence repeat (SSR) markers chosen for their coverage of the wheat genome, was initially conducted based upon the 2001 seedling trial data in an attempt to rapidly identify genomic regions associated to resistance. The BSA did not reveal any markers associated with resistance to crown rot. As a result, a full mapping study was conducted. One hundred and twenty eight (128) SSR markers were mapped across the population to produce a framework map. Previously screened AFLP markers were added to the map. Composite interval mapping revealed eight QTL associated with resistance. Of these, three (located on chromosomes 2B, 2D, and 5D) were consistently detected in each of the three seedling trials. Two QTL (on chromosomes 1A and 3B) were detected in two of the three trials. The 2D, 3B, and 5D QTL were inherited from W21MMT70, whereas the 1A and 2B QTL were inherited from Mendos.

Two software programs were used to identify epistatic interactions between QTL. While the results of the two programs differed markedly, both programs detected a highly significant interaction between the W21MMT70 inherited 5D
QTL and a locus on chromosome 2D inherited from Mendos. The overall effect of the epistatic interactions was not as great as the additive effects of non-epistatic QTL. Nonetheless, the presence of epistasis may indicate that, particularly in the case of 5D, the effect of this QTL may be dependent on the background into which it is introgressed.

Validation of three W21MMT70-inherited QTL (on chromosomes 2D, 3B, and 5D) was conducted on three F₂ populations with W21MMT70 as one of the parents. While the 5D QTL was validated in two of the three crosses, neither the 2D nor the 3B QTL were detected in any of the F₂ validation populations. It is likely that the size of the F₂ populations (the largest composing of 94 individuals), in conjunction with the variability that is inherent when screening for resistance to crown rot, precluded validation of these regions. Validation of the 2B Mendos-inherited QTL was conducted on a Sunco x Batavia doubled haploid population because Sunco possesses the same *Triticum timopheevi* 2B introgression that is present in Mendos. This validated QTL (designated *Q.Cr.usq-2B2*) explained 11 % of the phenotypic variance in the Sunco x Batavia population.

To assess the effectiveness of pyramiding QTL for resistance to crown rot, a 2-49 x W21MMT70 population was examined. A number of lines of this population performed significantly better than each of the parents in the replicated seedling trial that was conducted. Four QTL, located on chromosomes 1A, 1D, 2D, and 3B, were detected. The 1A and 1D QTL were inherited from 2-49 whereas the 2D and 3B QTL were inherited from W21MMT70. The 1A QTL from 2-49 has not been previously validated, and this QTL has been designated *Q.Cr.usq-1A1*. The 3B QTL (designated *Q.Cr.usq-3B1*) had the highest effect (LRS 42.1; explaining 21.0 % of the phenotypic variance) in the 2-49 x W21MMT70 population. The 2D QTL (*Q.Cr.usq-2D1*) was shown to have a minor effect. The 5D QTL that was inherited from W21MMT70 in the W21MMT70 x Mendos population was not detected in the 2-49 x W21MMT70 population. A number of possible explanations for the inability to detect this QTL in the 2-49 x W21MMT70 population are discussed.
CERTIFICATION OF DISSERTATION

I certify that the ideas, experimental work, results, analyses, and conclusions reported in this dissertation are entirely my own effort, except where otherwise acknowledged. I also certify that the work is original and has not been previously submitted for any other award, except where otherwise acknowledged.

__ ________________________________
Signature of Candidate Date

ENDORSEMENT

__ ________________________________
Signature of Principal Supervisor Date
ACKNOWLEDGEMENTS

There are many people I would like to thank for a variety of reasons. Firstly, I’d like to thank my supervisor, Professor Mark W. Sutherland - the “Research Trainer”. Mark’s seemingly unlimited knowledge of most things plant and his clear passion to gain more, have been essential for both the guidance and motivation required to complete this study. On a personal level, I would like to thank Mark for his understanding and compassion when not just one, but two distractions entered my world, bringing with them an era of uncertainty. It has, almost always (!), been a pleasure to be supervised by Mark.

My knowledge of general molecular biology techniques was raw at the commencement of this work – I am thankful to Dr. Raechelle Grams for “teaching me the ropes”. Dr. Bert Collard’s enthusiasm instilled a real interest for QTL mapping in me (even though he himself may still be a sceptic), and Dr. Anke Lehmensiek’s German efficiency helped me to appreciate the difference between a map and a good map. The majority of the phenotyping presented in this thesis was conducted under the supervision of Dr. Graham Wildermuth and Mr. Matt Davis, and I am grateful for their leadership in this area.

I have spent more years than I care to admit trying to complete a study worthy of receiving a PhD. I have no doubt that I would not have made it to the end without the community feel that is generated by the Biological and Physical Sciences Department at USQ. There are too many people to name, but Cassy Percy, Bene Watson, Grant Daggard, Eric Storlie, Joan Vickers, Vic Schultz and Pat McConnell deserve special mentions.

I also have no doubt that I would not have made it to the end (or even the beginning) without the support of my parents, Kath and Bill. I can’t find words that adequately express my appreciation; appreciation for financial assistance in my undergraduate years, and, even more valuable, appreciation for your guidance and friendship. I can only hope that my children grow up to have the same love and respect for me, as I do for you.
I briefly mentioned two distractions that came into my life during the course of this study - but really there were three. My wife, Jessica, has been the greatest distraction of them all. I know that I haven’t always been easy (and you know my finishing this PhD probably won’t make that much difference), but I know that I’m a happier person with you. Thankyou Jess - your support, encouragement, and optimism were, and continue to be, a source of inspiration.

My final thanks go to Jacy and Will - your distractions, almost always (!), make everything worthwhile.

OTHER RELATED PUBLICATIONS

TABLE OF CONTENTS

CHAPTER 1. BACKGROUND AND LITERATURE REVIEW 1

1.1 INTRODUCTION ... 1

1.2 THE ORIGIN OF CULTIVATED WHEAT ... 2

1.3 WHEAT PRODUCTION IN AUSTRALIA ... 4
 1.31 Production Limitations ... 5

1.4 CROWN ROT .. 6
 1.41 Economic Importance .. 6
 1.42 Early Research .. 6
 1.43 Symptoms of Disease ... 8
 1.44 Causal Organism ... 8
 1.45 Environmental Factors Affecting Disease Development 11
 1.45.1 Rainfall Patterns .. 11
 1.45.2 Soil Moisture ... 11
 1.45.3 Crop Nutrition .. 12
 1.45.4 Stubble Retention .. 13
 1.46 Management ... 13
 1.46.1 Stubble Management ... 13
 1.46.2 Crop Rotation ... 15
 1.46.3 Biological Control ... 16
 1.46.4 Tolerant Varieties .. 16
 1.47 Gene Expression of Tolerant Varieties ... 20

1.5 THE WHEAT GENOME .. 20

1.6 GENETIC MARKERS ... 22
 1.61 Molecular Marker Types .. 22
 1.62 Applications of Molecular Markers ... 25
 1.62.1 Germplasm Diversity Analysis .. 25
 1.62.2 Construction of Genetic Linkage Maps ... 25
 1.62.2.1 Wheat Genetic Linkage Maps ... 28
 1.62.3 QTL Mapping ... 28
 1.62.3.1 Methods to Detect QTL ... 29
 1.62.3.2 Considerations for QTL Analysis ... 30
 1.62.3.4 Bulked Segregant Analysis – A Shortcut to Detecting QTL? 32
 1.62.4 Marker-Assisted Selection ... 33
 1.62.4.1 Backcross Breeding .. 34
 1.62.4.2 Gene Pyramiding .. 35
 1.62.4.3 Incorporating QTL into Breeding Programs 35
 1.62.4.4 Cost-Benefit Analyses .. 37

1.7 MOLECULAR MARKERS FOR RESISTANCE TO CROWN ROT 38

1.8 RATIONALE FOR THE CURRENT STUDY .. 39
LIST OF TABLES

Table 1-1. The biological species of wheat that exist at each ploidy level 3

Table 1-2. Advantages and disadvantages of commonly used molecular marker types...23

Table 2-1. Means and ranges for crown rot disease severity for parental lines and doubled haploids ...52

Table 2-2. One-way ANOVA for each seedling trial with estimated heritability values. ..55

Table 2-3. Lines included in bulks and their disease severity (% Puseas) rating. ...56

Table 2-4. Unlinked SSR markers and chromosomal locations they have been reported to map to ..57

Table 2-5. Number of markers and chromosome length after addition of AFLP markers to the framework map. ..61

Table 2-6. Number of markers per chromosome, map distance, number of double cross-overs, and map distance after removal of double cross-overs from the framework map after addition of AFLP markers63

Table 3-1. Significant markers (p<0.01) from the marker regression report (Map Manager) based upon 2001 seedling trial data..........................78

Table 3-2. Significant markers (p<0.01) from the marker regression report (Map Manager) based upon 2003 seedling trial data...............................79

Table 3-3. Significant markers (p<0.01) from the marker regression report (Map Manager) based upon 2005 seedling trial data...............................80

Table 3-4. Thresholds for QTL detection based upon permutation tests81

Table 3-5. QTL for crown rot resistance detected using simple interval mapping in three seedling trials ..85

Table 3-6. QTL for crown rot resistance detected using composite interval mapping in three seedling trials ..87

Table 4-1. Summary of the reconstructed map produced using RECORD.......103

Table 4-2. QTL for crown rot resistance detected by composite interval mapping in three seedling trials with markers ordered according to RECORD.106

Table 4-3. Summary of QTL detected using QTLNetwork ..111
Table 4-4. Epistatic interactions detected by QTLNetwork

<table>
<thead>
<tr>
<th>Table 4-4. Epistatic interactions detected by QTLNetwork.</th>
<th>113</th>
</tr>
</thead>
</table>

Table 4-5. Significant digenic interactions between loci for resistance to crown rot that were detected in at least two of the three seedling trials using the Epistat program.

<table>
<thead>
<tr>
<th>Table 4-5. Significant digenic interactions between loci for resistance to crown rot that were detected in at least two of the three seedling trials using the Epistat program.</th>
<th>116</th>
</tr>
</thead>
</table>

Table 5-1. Polymorphism assessment for suitable markers to be screened on each of the W21MMT70-derived QTL in each F2 population

<table>
<thead>
<tr>
<th>Table 5-1. Polymorphism assessment for suitable markers to be screened on each of the W21MMT70-derived QTL in each F2 population</th>
<th>128</th>
</tr>
</thead>
</table>

Table 5-2. Descriptive statistics of the three F2 populations chosen for validation of W21MMT70 derived QTL

<table>
<thead>
<tr>
<th>Table 5-2. Descriptive statistics of the three F2 populations chosen for validation of W21MMT70 derived QTL</th>
<th>129</th>
</tr>
</thead>
</table>

Table 5-3. Validation of W21MMT70-derived QTL in each of the F2 populations

<table>
<thead>
<tr>
<th>Table 5-3. Validation of W21MMT70-derived QTL in each of the F2 populations</th>
<th>131</th>
</tr>
</thead>
</table>

Table 5-4. Descriptive statistics of combined data, leaf sheath one data (Sheath 1), leaf sheath two data (Sheath 2), and leaf sheath three data (Sheath 3) for the 2-49 x W21MMT70 doubled haploid population

<table>
<thead>
<tr>
<th>Table 5-4. Descriptive statistics of combined data, leaf sheath one data (Sheath 1), leaf sheath two data (Sheath 2), and leaf sheath three data (Sheath 3) for the 2-49 x W21MMT70 doubled haploid population</th>
<th>137</th>
</tr>
</thead>
</table>

Table 5-5. A comparison of results from QTL Cartographer and QTLNetwork for the chromosomal regions of interest

<table>
<thead>
<tr>
<th>Table 5-5. A comparison of results from QTL Cartographer and QTLNetwork for the chromosomal regions of interest</th>
<th>140</th>
</tr>
</thead>
</table>

Table 5-6. Estimated allele size (base pairs) of selected SSR markers in the regions of the 2B, 2D, 3B, and 5D QTL

<table>
<thead>
<tr>
<th>Table 5-6. Estimated allele size (base pairs) of selected SSR markers in the regions of the 2B, 2D, 3B, and 5D QTL</th>
<th>147</th>
</tr>
</thead>
</table>
LIST OF FIGURES

Figure 1-1. Wheat production areas of Australia with yields for the 2000-2001 season... 4

Figure 1-2. An overview of the steps involved in linkage map construction.....27

Figure 2-1. Histograms of mean crown rot severity ratings of the W21MMT70 x Mendos wheat population from the 2001, 2003, and 2005 seedling trials....48

Figure 2-2. Histograms of the three seedling trials following square-root transformation. ..50

Figure 2-3. X-Y scatterplots showing correlations between the 3 seedling trials. ..53

Figure 2-4. Framework SSR and phenotypic marker map of the W21MMT70 x Mendos doubled-haploid population.................................58

Figure 2-5. Linkage groups after addition of AFLP markers.....................64

Figure 3-1. QTL identified by simple interval mapping using the program QTL Cartographer in three seedling trials...............................83

Figure 3-2. QTL identified by composite interval mapping in all three trials88

Figure 3-3. Mean disease severity (% of ‘Puseas’) of doubled-haploid lines with combinations of alleles from the three QTL regions.................90

Figure 3-4. Identification of leaf sheath specific QTL detected by QTL Cartographer for the 2001, 2003, and 2005 seedling trials.........................91

Figure 4-1. Heat maps for the comparison of map versions........................104

Figure 4-2. QTL detected using the software program QTLNetwork.........108

Figure 4-3. A graphical representation of main effect QTL and epistatic interactions identified by QTLNetwork..114

Figure 5-1. Histograms of disease severity in each of the F2 populations chosen for validation..130

Figure 5-2. Effect of alternative 5D alleles in both the Puseas x W21MMT70 and IRN497 x W21MMT70 F2 populations132

Figure 5-3. Field reaction of the Sunco x Batavia doubled haploid population. ..133

Figure 5-4. Validation of the Mendos-derived 2B QTL in a Sunco x Batavia doubled haploid population..134
Figure 5-5. Histograms of disease severity of the 2-49 x W21MMT70 doubled haploid population. ... 136

Figure 5-6. Linkage map of chromosomal regions of interest from the 2-49 x W21MMT70 doubled haploid population. ... 138

Figure 5-7. Comparison of the 1A QTL identified in a 2-49 x Janz population and the 2-49 x W21MMT70 population. ... 141

Figure 5-8. Comparison of the 1D QTL identified in a 2-49 x Janz population and the 2-49 x W21MMT70 population. ... 142

Figure 5-9. Comparison of the 2D QTL identified in the W21MMT70 x Mendos population and the 2-49 x W21MMT70 population. 143

Figure 5-10. Comparison of the 3B QTL identified in the W21MMT70 x Mendos population and in the 2-49 x W21MMT70 population. 144

Figure 5-11. Mean disease severity (% of ‘Puseas’) of doubled-haploid lines with combinations of alleles from the three QTL regions.......................... 145

Figure 6-1. Location of QTL for resistance to crown rot in a range of doubled haploid populations .. 160