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Abstract

This research deals with the study of dynamics afoparticles and bubbles in
creeping flows of viscous fluidsThe studywas based otheoreticalapproachesand
numericalmethods To conduct numerical simulations, the original FORTRAN codes
were developed and resdd on a desktop computdio processthe obtained results the
Mathcad software was actively used.

Firstly, the dynamics of two unlike and like charged particles in viscous fluid in the
creeping flow approximatiowas studied Two types and different models of viscous
drag forces were taken intoonsideration.The particles &rajectories under the
influence of all these forces were studied and compared thitke immersed in

inviscid fluid.

Next, the complex dynamics of small rigid particles underitiilrenceof acoustic
radiation force wrecorsidered. Our analysiwas based on a more advanced model in
comparison with those used in the earlier wofsarvazyan & Ostrovsky, 2009;
Ostrovsky, 2015)In addition to the Stokes drag force, the model used indthidy
include particle inertia, addethasseffect, andthe Boussinesd@asset drag force, the
effectsof thesewere ignored in the cited papershls been showthroughnumerical
solutions that albf these additional effectsan be important at some stages of particle
motion, whereas in othestages theycan be neglectedThe particle motion was
considered both for the plane and cylindrical geometriés. interesting and
prospectivemethod of particle control in a fluid was studied by periodic switching of

the acoustic modes in a resonator

In the last Chaptethere is an analysis dhe influence ofmemory integral drag
forces on the resonance characteristics of oscillating solid particles and gaseous
bubbles in a viscous fluid under thafluenceof an external sinusoidal forcé. has
beenshown that he memory integral dradorces leadto the wideing of resonance
curves andhereduction of resonance pealsd that the effective quality of oscillator
significantly decreases in comparison with the similar oscillator with only Stokes drag
force
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Chapter 1: Introduction and literature review

In the late 20th century, the dynamics of nanoparticles and sibblereeping
flows of viscous fluids have been under a focus of many research groups because
this field of research plays an important role in various biotechnological,
pharmacological and pure technological applications. Nanoparticles are important
elemants in the medical field (Murthy, 2007) as they can be used as the carriers for
vaccines and anticancer drugs (Madhav & Kala, 2011). It was discovered that by
using an external force (for example, the acoustic force (Zhtr#hg Nguyen,

2010; Ostrovsky & panyants, 2017), magnetic force (ZhuT&ung Nguyen,
2010), electric force (Zhu &rungNguyen, 2010), lasegenerated electromagnetic
(light) force (Hidai et al. 2010), etc), one can control particle motion and, in
particular, move particles from oneagk to another without touching them. As a
result, the nanoparticles can be used as drug cawigich arecapable to deliver

medicines to any organ in a human body.

Another benefit ofultrasound in medical fieklis to noninvasively and
temporarily disupt the blooebrain barrier to reach brain tumors. This method has
many advantagesfirstly, to break through thélood-brain barrierwithout any
surgery or risky of surgery. Secondly, to make microbubbleseramd to move
any objectgfor examples, redatls, drugsfatty plaquesetc) surroundng themin
the blood across thklood-brain barrier As has been shown in Refddynynen,
2008 Timbie et al., 2015), this is an efficient and safe mettwdidiver drugs
crossing theblood-brain barrier Figure 1.1 illustrates the rachanism of focused
ultrasound mediated blodarain barrier disruption. Circulating microbubbles
oscillate in the ultrasonic field, producing forces that act on the vessel wall to
generate three bioeffects that permit transport acrbss bloodbrain barrier:
disruption of tight junctions, sonoporation of the vascular endothelial cells and
upregulation of transcytosi€hapter 3 of this Thesis provides theoretical basis for
the particle and bubble control by ultrasound.

In industral apgications,the nanoparticlealso play an important role as they
are principal elements in microfluidic Zhu & Trung Nguyen (2010) have
mentioned in their research many useful applications of nanoparticles in
microfluidics and listed some methods of pagisorting. One of these methods is

connectedo the application of an acoustic force. For example, when there is a big
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sample of particles which we need to sort, i.e., to separate particles of small and big
sizes or smaller andreaterdensity, we can g@y an acoustic field of a certain
frequency and play with the resonance properties of particles. Some of the particles
will oscillate in the acoustic field because they are in resonaraothers will
remain almostat rest because they are not in thesa®ance. There is a simple
technology which allows us to collect highly oscillating resonance particles; other,
nonoscillating particles or particles oscillating with small amplitude, lbathen
separatd. Then the frequency of the acoustic field candhanged and further
particle sorting and separation can be undertaken. The theoretical basis of this
technology will be considered irhapter four of this Thesis.

¢ Endothelial Cell Basement Membrane
Tight Junction o Microbubble
Vessel Lumen & Red Blood Cell &\ Ultrasound

Ca\ve!:)ﬁn

Figure 11:. (From (Timbie, Mead & Price, 201p) Mechanism of focused
ultrasound mediatellood-brain barrier disruption.

Manipulation with nanoparticles by acoustic fieldan be used for another
practical applicatiomamelyfor the protection of wooden goods. The structure of
wooden materials consists of very small and thin canals as shoWwigure 12.

One of the options to protect the wood against deterioration by insects or
atmospheric effects is to deliver special chemical solutions or particles to the canals
which will preservethe wood against deterioration. Using the acoustical method

one can control delivery of small particles deeper into the wood to protect it in such

a way.



Figure 12: A crosssection of wooden materials at a microscopic vigwom the
website http://www.rationalskepticism.org/creationism/flooggologygoesup-in-
flamest51371.htm).

As mentioned above, particle control can be implemented not only by an
acoustic field but also by other external fieldor example, by an electric field.
However, when conducting charged particles move in a viscous fluid they
experience the action of distributed electric forces from other particles and viscous
forces which are modified due to the presence of othercestiThe importance of
such effects has not studied thus far. In the meantime, Saranin (1999) has
demonstrated that the electrostatic force acting between two charged conductive
particles differs from the classic Coulomb force F ~ 1/r2 , where r is #tantie
between the particle centers, due to the redistribution of electric charges within
each particle (the modified formula for the electric force will be presented further
in the next Chapter). This redistribution within two spherical conductive pastisl

illustrated by Figure 1.3.

In his first paper, Saranin (1999) derived a theoretical formula for the modified
Coulomb law. Later Saranin & Mayer (2010) undertook experimental validation of
the derived formula and presented the results of experiméstalon interaction of

two conducting charged particles in comparison with the theoretical finding.
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a) b)

Figure 13: (from (Hassan & Stepanyants, 2015Flectric charge redistribution
within two conducting unlikely charged spheres (a) and two unlikely edasgheres
with uniformly distributed charges (b)

Figure 14 shows the results obtained which are in a very good agreement with
Saranindés theory. As one can see from th
distance between the particles is largeugigr > 10d, whered is the diameter of
the spherical particle (see the data in the left lower corner of the figure in
comparison with line 1 when < 0.15). However, for the small distancesx{#

0.15) experimental data are in a very good agreeméhtthe theoretical data by
Saranin (1999) see line 2 and experimental data by Saranin & Mayer (2010)
shown by different symbols.
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Figure 14: (From (Saranin & Mayer, 2010)).he rormalised electric force acting
between two conductive particles a function othe inverse distance between the
particles. Line 1 corresponds to the classic Coulomb law, and line 2 corresponds to
improved Coulomb law. Symbols reflect experimental data.



Since that time (2010), no other experimemtse conducted in th area but the
results obtained are quite convincinghe modified Coulomb lawvill be used in
the next bapter of the Thesis to study the motmincharged conducting particie

a viscous fluid.

Despite the fact that the study of particle dynamica inscous fluid has a long
history, many important problems still remain unsolved (Shoji, 2004). This pertains
not only to the collective behawio of big particle ensembles but even to
interactions of two particles in a complex environment of shear flowm the
presence of solid obstacles, walls or free surfaces. Much research efforts have been
undertaken over the years to elucidate the particle dynamics in various situations.

One of the intriguing problems that have not been solved so far is the ignam
of two interacting charged particles in a viscous fluid. In recent years adgaht
of interesthas beenobservedin micro- and naneparticles due to their potential
applications in modern biotechnologies and other milkial technologies.
Quantitaive descriptions of such systems represent a certain challenge not only
from the practical but also from the acade point of view. In the nextrapter the
elementary acts ofhe interaction of two charged particles moving in a viscous
fluid are considexd. Two cases of particle interaction are studied and compared:
(1) when norconducting charged particles with uniformly distributed electric
charge interaamg in a viscous fluid and (2) when conducting spherical particles
interact. It is assumed thah both casesthe particles can freely move the fluid
either one after another or side by side, and their electric interaction is controlled
by the modified Coulomb force (Saranin, 1999). The equations of motion are
studied analytically where possibledaalsonumerically. The particle dynamics is
considered in the creeping flow approximation, that is under the assumption that
the Reynolds number is very small, Rea/n << 1, whereu is the particle velocity
relative to the fluida is the particle radius, angis the fluid kinematic viscosity.
For simplicity, we assume that the particles are solid and have a spherical shape.
Even in such relatively simple case thecass force actingn each particle differs
from the case when the particles are isolated or very far from each other; the force
insteaddepends on the distance between the particles and their configuration in a
space. The total viscous force s@sisthe Stokes drag force anthe memory



integral drag force, which is known as the BoussinBsgset drag force in the case
of solid particles.

Another area of applications of theoretical study of motion of charged entities
(particles, droplets, or bubbles) in aseous fluid is relatedto the recent
breakthrough experiments on microbubble dynamieently, it was discovered
(see Ref(Bunkin & Bunkin 2016), that a small bubble in a liquid can be charged
becausat is usually surrounded by ions of impuritiesssolved in a liquidSuch
bubbles surrounded by ionkepositedon the bubble surfaces were callaabstons
in the cited paper. The ions makecro-bubbles stable in liquidso that theylay
a role of nucleus in the processes of vaporization and cawitafioe bubstones
carrying ions can be positively or negatively charged, or remain neutral. However,
according to the experimental data mentioned in the revigeumkin & Bunkin,
20169, in the majority of cases bubstones are charged either positively or
negdively. In such cases, it is important to investigate the character of bubston
motion and their interaction with each other in viscous fluigiing external fields,
for example, acoustic or electragnetic fields, one can undertake bubble control,
supprasing bubble growth or removing bubbles from the liquid. This can be very
important to prevent onset of cavitation in liquids and their negative impact on

solid surfaces.

As well-known, cavitation is caused by microbubble nuclear which grow and
then collgse in a fluid producing very high pressure in a small volume. When
bubbles contact metallic surfaces (for example, fast rotating propeiler fluid),
they affect surfaces with a very high pressure in the process of a collapse. It is
impossible to pury completely water from microbubbles even in a laboratory to
avoid the onset of cavitation. However, the development of methods of bubble
control in fluids can provide an effective protection against material destruction
due to cavitation if, for examplesharged microbubbles (the bubstons) can be
repelled from metallic surfaces by electric forces. Therefore, there is a great
interest to the dynamics of bubstons and methods of their control by external

electricand acousticields.

The electric charge orhé surface of bubstons can be distributed in accordance
with the external electric forces. In particular, when two bubstons approach each

other, the ions on their surfaces experience redistribution like within charged

6



conducting particles described abovkis is shown schematically in Figure51.

This situation is very similar to what was considered by Saranin (1@999)s

seminal papersDue to the charge redistribution, the interaction of charged
bubstons is described byyS&€oahiomdb&sf 6om
Therefore, motions of bubstons in the viscous fluid should be described by taking

into account the combination of modified electric forces, buoyancy (Archimedean)
forces and viscous drag forces, which includg®h the Stokes drag forcand

memory integral drag force

3 D @
@ ~ @ @@
S D @ o
® > © o
D G
O o’
(@ (b)

Figure 15: Bubbles (bubstons) surrounded by liquid molecules (a) and ions (b): (a)
neutral bubstons, (b) charged bubstons with redistributed ions on the surfaces.

The concept of bubstons and theale in fluid mechanics presented in the
review paper byBunkin & Bunkin (2016 and supported by recent experiments
reflected in the review iselatively new This concept opens an opportunity for the
study of ensembles of interacting bubstons in fluidking into account both
electric and hydrodynamic forces acting on them. As a first step, the simple case of
the elementary act of interaction of two bubstons should be studied. This study is
currently underway as the development of the results presemt€thapter 2 for
two conducting charged particles in water, but they are still incomplete and

therefore are not included in this Thesis.

Two limiting cases of dynamics of solid particles and gaseous bubbles in liquids
can be further generalised for dropldtguid particles) moving in a liquid of
different properties (for example, oil dropletsanvater). The droplets can preserve
their shapes due to surface tension on the interface between different liquids. In their
recent paperCharalampous & Hardalusa2017) studied the interaction between

droplets and demonstrated experimentally that droplet dynamics can be fairly



complicated. Figure 1.6 from their paper illustrates differegimes of droplet

droplet collisiors.

The droplets can be both neutral aeléctrically charged. Therefore, further
development of methods of description of their motiod iateraction is topical and
has a good perspective for application in engineering technology. It is of a special
interest to develop methods of droplet cohbry acoustic fields. The results obtained
in Chapter 3 of this Thesis shed light to the droplet dynamics under the action of

acoustic fields, but needs further development.

o e
SO o0 o0 g
R 2 e
o6 | o

(a) () (©)

O
—
©

@ {)\@ » o—

(d) ()

Figure 1.6: (From Charalampous & Hardalupa®017)). Regimes of dropletiroplet
collision: (a) coalescencdp) bouncing, (c) reflexive separation, (d) stretching
separation, and (e) penetration.

One of the interesting phenomena which has not been studied well so far is the
possibility to force droplet and bubbles ¢scillate under the action of external
acoustic field. Oscillating droplets and bubbles produce a hydrodynamic force known
as the Bjerknes forcamb, 1932;Pelekasis & Tsamopoulp4993. The structure
of such force is very similar to the structure tbe Coulomb electric force it
decreases with the distance from oscillating bubble'@sand it can be of either
attractive, if two bubbles oscillate the sameghase, or repulsive, if they oscillate in
antiphase(the situation can be even more complicated, if thegillate at the

arbitrary phase shift between 0 apfd The expression for the classical Bjerknes

8



force was generalized by Nemtsov (1983) who showed that, in a compressible fluid
the acoustic signal generated by one oscillating bubble reaches anothler rimib
instantaneously, but aftesome delay. This can produce several interesting and
important effects that have not been studied thusHar.example, two oscillating
bubbles can move forward, experiencing reaath@mentumdue to the radiation of

an acoustic waveThe first approach tdubble study in a compressible flwedas
undertaken in the paper IBtepanyants & Yeof2008, but they considered bubble
motion only in a perfect fluidEven in this simplified case they obtained interesting
results wich show that two oscillating bubbles can demonstrate a behavior very
similar to what is shown ifrigure 1.6 for the droplets. The bubbles camalese
boune, reflex or separat. This study can be further developed and extended for
droplets in viscousldids. In general, interaction of two droplets or bubbles in a
viscous fluid can be a subjeaaft action of various forces includireectric force with
Saraninbés modification, Bjerknes force
with Stokes and memygiintegral drag forces. Some of these effects are studied in the

present Thesis, others will be studied later.

One of the topical problems ihe manipulation of particle motion in a fluid
medium by external forces. This can be done with the helpnaglectric or a
magnetic force, if a particle is charged, or dayacoustic force, if the particle is
uncharged The periodaveraged action of sound on small particles can cause
complex motions due to the action of the acoustic radiation force (ARF). This
problem has been studied sincethe mid-190%s (Yosioka & Kawasima, 1955,

W

Gor 6kov, 1962) . JARF dffbceshave deetwiddlywsed id e c a d e

microfluidics, biological acoustics, and medicine. Among the promising areas of
applicationare themanipulaton, concentration and stirring of particles and bubbles

in ultrasonic resonators of different configurations. The theoretmasideration of
some of these effects was undertaken in Sarvazyan & OstraiZ39). However,

in that work only two extreme cses were studied, namely, the hard, -non
deformable particles, and gaseous bubbles. This is not directly applicable to many
practical cases, such asthe case of theiological cells which are typically only
slightly different in density from the ambiefiuid. One example of the latter case

was analysed by Ostrovsky (2015) who considered the rate of change o& such

Aparticled concentration in a cylindrica



It is of significant theoretical and practical interests to study the particle motion
under the action of ARF taking into account the two main parameters of a particle, its
density andthe sound speed in the particle materidl.is known that even the
direction of particle drift in a standing acoustic wave can be different depending on
its mechanical parameterSarvazyan & Ostrovsky, 2009)Another potentially
important extension of existing models te incorporate the effects of the
BoussinesiBasset drag (BBD) force (see, e.g., (Lovalenti & Brady, 1993;
Stepanyants & Yeoh, 2009) and mefieces therein) and mass inertia, in addition to
the viscous Stokes drag force which generally dominates at small Reynolds numbers,
but with some noticeable exceptions as wildsussedelow.

It is well known (Lovalenti & Brady, 1993Yhata small flud drop moving in a
viscous fluid at a small Reynolds number experiences an influence of at least two
drag forces, one of them is the traditional Stokes drag force and another is the
memoryintegral drag (MID) force. In the past decadevast number of ers
devoted to the role afhe MID force in the dynamics of solid particles, gaseous
bubbles and other liquid drops in viscous fluidsve beempublished (see, e.g., Refs.
(Candelier, Angilella, & Souhar, 2004; Candelier, Angilella & Souhar, 2005;
Kobayasi & Coimbra, 2005; Stepanyants & Yeoh, 2009; Visitskii, Petrov &
Shunderyuk, 2009; Aksenov, Petrov & Shunderyuk, 2011; Xie & Vanneste, 2014
and Hassan, Ostrovsky & Stepanyants, 2017) and references therein). The growing
interest in this problem in receygars is associated with the developmerthehew
field of microfluidics and the technology of using mierand naneparticles. Such
technology is already used in medicine (for the diagnostics and drug delivery to the
specific organs), biology, food qutgl control,andchemistry, etc. (see the review by
Ostrovsky & Stepanyants (2017) and references therein). Chapteri8 ohésis is
devoted to studgig the problem of micrgoarticle manipulation by ARF.

In many cases nanoparticles can experience ahlat@y motion around quasi
stationary positions under the action of external forces, for exalmplanacoustic
radiative force (Visitskii, Petrov & Shunderyuk, 200%ksenov, Petrov &
Shunderyuk, 2011;Hassan, Ostrovsky & Stepanyants, 201@strovsky &
Stepanyant2017) In such case# is important to know the resonance properties of
nanoparticles, e.g., the shape of the resonance curve (the dependetiee of

amplitude of oscillation on the frequencytbt external sinusoidal forcejhe width

10



andthe amplitude of the resonance curemdthe quality of the effective oscillator.

All these characteristics are well known for the classical linear oscillator and have
been described in many text books and monographs (see, e.g., SEb&e,
Klepper & Kolenkow, (2014)). When the particle oscillates in a viscous fluid under
the action of external force, then, as mentioned above, at least two viscous forces
should be taken into account, the Stokes drag forceteilID force. If only the
Stokes drag fi@e is taken into consideration, and the MID force is ignored, then the
corresponding equation of motion reduces to the equation for the classical linear
oscillator with dissipation. However, to our best knowlede influence of the

MID force on the resnant property of an oscillator has not been studied thusyfar
other authorsThis problem was considered in our recent publication (Hassan &
Stepanyants, 2017) and is described in Chajpbéithis Thesis.

Because the Thesis is focused on the partoiep, and bubble dynamics in a
viscous fluid, it is reasonable to present and explain the basic equatimotion for

these entities. This is done in the next subsection.

1.1. The equation of motion of a fluid particle in a viscous surrounding fluid

The equation of motion of one spherical particle with the added mass effect
taken into account is (Batchelor, 1970; Landau & Lifshitz, 1988):

a 1 d° 3 F
+_ﬁ_:; 1 — S
gézgtz 19 4pR’r
11
gugfiﬁrr%drl +iF Ré r% t”lg(r)jtf‘ -
RS E % at W o ?;é“’dt+_r] R

whereg is the acceleration due to gravityiis the particle densityandr is the
particleto-fluid density ratio. The added mass effect is taken into account through

the coefficient 1/2 in the brackets the lefthand side of the equation.

The first term in the righbandside describes the gnsly/buoyancy forcethe
second term describes the electrostatic force and the third term describes the total
drag force including the Stokes drag (SD) force (the first term in the square
brackets) andhe MID force (the second, integral, term in the scudarackets).

FunctionF a 1, if the correction to the BBD force is ignored, Bra f, if the
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correction to the BBD force is the same as to the SD force.

The SD and MID forces have a long history. In 1845 Stokes dethe@rst
formula forthe SD force acting on a stationary mog a solid spherical particle in
the limit of a creeping flow (when Reynolds number is very small). Hadaraacd
separately Rybczynskiin 1911 obtained a genersdd Stokes formula for
stationary moving spherical liquid inclusions (drops). Then in 1BEfidman &
Pearson introduced a correction to the formulathf@S D f or ce by wusing
solution (Landau & Lifshitz, 1993). Recentlthe general formulae for the drag
force acting on drops or bubbles of any densities and viscosities were obtained
(Gorodtsov, 1975). On the other hand, in 1885 Boussinesq and three years later
Basset presented another force acting on a solid particle, which is currently known
as the memory integral drag (MID) force or ineithparticular case called the
BoussinespBassetdrag (BBD) force. More details for the MID forcespecially
for the case of a solid particle moving in quiescent flums be found in many
textbooks (see, e.g., (Landau & Lifshitz, 1993)).

During this time, many corrections to SD and MID forces haaenbderived for
many cases of particles moving in different fluids. For example, in 1922 Faxen
derived a formula for the neaniformity of moving particls in an external fluid
flow. Saffman in 1965 derived a formula for the force appearing due to particle
rotation in the course of motion and external shear flow (see (Legendre &
Magnaudet, 1997)). The latest version of the equation of drop motion (including
gaseous bubbles and solid particles) has been derived by Lovalenty and Brady in
1993 (Lovalenty & Brdy, 1993). More details about the history of the SD and
MID forces can be found in Stepanyants & Ye(Q09).

The gudy of particle, drop, and bubble motions in fluid media has numerous

practical applications. Some of thewill be described in the next sions.

1.2. Applications

The importance of particle dynamics in a creeping flow is backed by many
practical applications to mixtures of fluids and drops (including solid particles and
gaseous bubble) and suspensiome of knownexampls is particleliquid
mixtures used for pharmaceutical purposes. Other important exap@iesn to
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the transport of particles in the atmosphere (dust) and oceans (suspensions, sand,
etc.). One of thenmoreintriguing problems that have not been solved so far is the

dynamics otwo interacting charged particlesarviscous fluid.

Particle motion in viscous fluid was studied in several papegpplication to
the cooling systema of nuclear reacta (see, for example,Stepanyants & Yeqgh
2009;2010)and references then). Dustparticles can penetrate into the open pool
vesselasshown in Figure 1.7ln the density stratified fluid (due the temperature
difference in the upper and lower layers) particle motion can be decelerated or even
terminated at the sharp density interfaséere they can be easily collected and

removed.

U

Figure 1.7: (From (Stepanyants & Yeqh2010)). Open pool Australian nuclear
reactor (OPAL): (a) photo; (b)i sketch of the cooling vessel containing Hager
fluid (tap water) of different densit

The particle motion under the action of theoustic radiation forckas a variety
of potential applications. It can be used, in particular, for stirring and mixing of
particles (Sarvazyan & Ostrovsky, 2009), as well as for their separation and
colledion at certain places, from where they can be subsequently removed to
provide a cleaning of fluidin particular, when there is an ensemble of particles of
different properties (mass, radius, density) placed in the acoustic resonator, they
can be collec® in nodes and antinodes, as shown in Figue This can be used

as the method of particle separatioraddition to that mentioned abave
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Figure 18: (From (Ostrovsky & Stepanyants, 2017Fchematic illustration of
particles gathering in the nodes afstanding acoustic wave in a plane resonator
with initially randomly distributed particles (from panel a) to panel b). Lines show

a standing acoustic wave in two instances of time when the wave phase differs on
TT.

Another posdile applicaton of particle motion under the action of the acoustic
radiation forcein industry is emulsion separman. Emulsion separationis an
important method to many industry areas: for example, in petroleum indétry (
isolation ofcrudeoil at the oilfields), regcle system of valuable oilsecycle the
wastewaters and much more. Thene numerousways to apply the raulsion
separation this can bedone by means ophysical methodselectrochemical
methods,or by adding specialchemcals. However,these methods areither not
efficient (for examplethe electrochemical methodse verycosty) or are not as
safe for example,n the case of adding chemicals.Ref. (Nii et al, 2009)it was
proposed a new technique to appigdsionseparatiorby means otultrasoundAs
the example,it has been showthatthe method can be usédl separate canola oil

from water. This technique is safenddoesnotincur high operation cost.

Thévozet al., (2010) studied how to separate particlesneans ofultrasonic
standing wave. The authors invented arcaustophoretic cell synchronization
device shown in the i§ure 1.9 below. As shown in frame (A), synchronous
mixture of cells and buffevolumetrically pumped into thdevice. Synchronization
was achieved by fractionating the cells according to size such that leeier(e.qg.,
Gy) elute throughthe outlet A whereas smaller cells (e.g.;)@lute throughthe
outlet B. The photographin frame (B) showsthe device withthe attached
piezoactuator o its backside (scale bas 5 mm). Frame (C) represents the
fluorescencemicrographs of theacoustophoretic cell synchronization device in

operation. A binary mixture of greefb-em-diameter) and red {&m-diameter)
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polystyrene beads entetise inlet area (left) and are acoustophoretically separated
to elutethroughthe outlets A and B, respectively (right). Scale bars are &f in

both images.Frame (D) shows a wo-dimensional nurarical simulation of
separationalong the channel, showing buffer (gray) with bands of particle
trajectories. Larger particles (green) are subject to a greater acadstition force

and thus converge faster to the nodal plane atcémter of the chanhddashed
line) and elute througthe outlet A. Smallermarticles (red) do not reach the nodal
plane and elute througine outlet B. Thus, due to different response of large and
small particles on the ultrasound standing waves, one coantentratelarge
paticles in the center of a cylinder, while the small particles not affected by the
acoustic force remain out of center. Therefore, it is possible to separate and collect

the particles in different vessels.

A < s
Microscope/
CCD Camera

Amplified sinusoidal

= ;
a signal

@  Asynchronous cells

Figure 19: (From (Thévoz et al, 2010)).Acousbphoretic cell synchronization
device andexperimental setups described in the text
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Similar technology is used for tlseparabn of micro particlesfor example fat
globules and cells from milkPfievet al, 2019, and alcohol from beverages (Priev
& Barenholz, 2010). Figure 10 shows the separation of fat globules in milk by
standing waves in the cylindrical pip&coustic radiation force in resonators is also
used for food and water quality control and monitoring (Priev & Sarvazyan, 2009;
Priev & Barenholz, 2010; Ostrovsky et al., 2011).

Figure 110: Separation of fat globules in milidark spotspy cylindrical standing
wavesin the pipe(from (Prievet al, 2015).

Acoustic fields can be used for the migarticle delivery to certain places
within liquids, tissues, or other fluid materials. There are in particular devices
known asthe iac oust i ¢ whichvallewe esearachers and engineers to
manipulate with individual particles. Figure 11 shows an example of how
particles can be contideld by an acoustic field. As one can saewas possible to

write even relatively complex texbs/, manipulatingnumber of isolated particles

Further development of this technology is very topical in many applications and
especially in medicinend foodtechnology With the help of acoustic tweezers,
operating with the lowntensity sound waves, one can deliver gsuto the
particular organs wiih a human body. This is a vepromisingfield of research
currentlydeveloping in many countries and requiria strong support from theory.
Results obtained within th Thesiscontibutes to this field of research and is
presented in Chapter 3
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Figure 111: (From @ing et al, 201p. a) Stacked images demonstrating the

particle motion control irx andy directions using €m fluorescent polystyrene
beads to write the word ANATUREO. b) St
of bovine red blood cell s toth¢PemState t he |
University).

If a droplet or a particle moves fbrtand back due to the action of external
acoustic field, it can be eventually dissolved in the surrounding liquid. This idea
was discussed in the paper by Schmid et(2016) who suggested to deliver
nanoparticles containing a solvable driagspecific ogans in a human bodyn
alternative method of particle manipulation suggested in the paper by Ashkin
(1997) is based on the optical trapping of particles by a highly focused laser beam.
But this method can be applied only to the transparent liquids, aféne acoustic
methods can be used even in the case oftraorsparent liquids.

The growing interestin the resonance properties of forced oscillations of
particles and gaseous bubbles in a viscous fluid at small Reynolds numbers in
recent years is assated with the development of a new field of microfiiegl and
the technology of using micraand naneparticles. Such a technology is already
used in the medicine (for the diagnostics, drug delivery to specific organs), biology,
food quality control, and chemistry, etc. (see the reviem Ostrovsky &
Stepanyantg2017)and references therein).
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Taking into account the importance of the study of particle dynamics in viscous
fluids, the topicality of the theme of such research and numerous possible

applicatons, we can formulate the objectives of ttésearch Thesis

1.3. Research Objectives

The objectives of the Thesis are threefold:

1) The first objective is tonvestigate the influence of disturbed electric charges
within conducting solid particles on their dymics in aviscous fluid. This will be
done in the secondhapter.Two types of viscous drag forces will be taken into
consideration: the quastationary Stokes drag force and the transient Bous3inesq
Basset drag force. Different models of viscous dragde will be analysedvhen
the viscosity coefficients are constants, like in the case of a single particle, and
when they are modified due to the presence of a second particle. Comparison of
particle trajectories under the influence of all these forcdk b studied and
compared with the case of particles in an inviscid fluid. Precise knowledte of
electric and hydrodynamic forces actingtbe particles in a fluid will allow one to
control the particle motion by external forces.

2) The £cond objectives to investigate the particle motion under the influence
of an externalacoustic force. This will be done in the thicdapter. The influence
of the MID force will be studied in application to particles of different properties
(different densities and nmeials) in the acoustic resonators of different geometr
(plane and cylindrical). The aim of this ltapter is to demonstrate that particle
motion in a viscous fluid can be effectively manipulatedamyexternal acoustic
field. Figure 1.12, in particular,illustrates that the ice particle can be moved by
radiative acoustic force. As a resuthis can be used in many applications, for
example in medical applicatisnwhen a particle drifts ta specific place and then
oscillates around tlat place; the partie could contain some medicine. In the
process of oscillationst will dissolve and it will deliver a special drug to the organ
and then oscillate untifully dissolvel in the organ (Ostrovsky & Stepanyants,
2017).
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Figure 1.12: (from (Hassan et al., 2017)). Dependences of ice particle position on
time when the acoustic field periodically switches from mode 3 to mode 4 and back.
Odd decreasing |ines (1, 3, €é&) pertain
pertain to mode 4The dashed horizontal line shows an equilibrium position for a
particle in the presence of fourth acoustic mode only.

3) The third objective is to study the resonance properties of oscillating particles
and bubbles in a viscous fluid under the actiomméxtenal force. As one can see
from Figure1.12, under the action of external ARF, a particle experiences not only a
drift motion but also oscillations. The amplitude of oscillations depends both on the
intensity of external force and mainly on the frequeriderefore it is important to
know what will be the response of the particlee tothe external force. The
resonance properties of a linear oscillator with dissipation are very well known
(Siebert, 1986 and Klepper & Kolenkow, 2014) for the case whenStokes drag
force is taken into account. However, in Chapter 4 it will be shown that the influence
of MID forces can dramatically change the resonance properties both solid particles
and gaseous bubbles. The qualities of corresponding oscillators asigaifioantly

changed

1.4. Content of research

The outline of th& hesisis as follows:

U In chapter 2the influence of charge distribution on particles motion in
viscousfluid will be investigated in detailA motion of an individual uncharged

particle in a vscous fluid at small Reynolds numbers in the creeping regime has been
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studied inthe paper bystepanyants & Yeol{2009). It has been demonstratedthe

case of a transient flguthatthe influence of BoussinésBasset drag (BBD) force
(Gorodtsov, 1975 ovalenti & Brady, 1993, and Kim & Karrila, 2005) is very
important. It provides different character of particle motions in comparison with the
well-known Stokes drag (SD) force (Batchelor, 1970;daan & Lifshitz, 1988). In
chapter2, a motion of two edctrically charged particles in different setups will be
considered taking into accouagravity/buoyancy forcg an electrostatic force, and
aviscous drag force. The effect of viscosity will be taken into consideration through
the SD force and BBD forcevhich depends on the motion prehistory (Gorodtsov,
1975; Lovalenti & Brady, 1993; Kim & Karrila, 2005; Landau & Lifshitz, 1988). A
reciprocal influence of particles on the drag force (Happel & Brenner, 1983) will be
also studied for several particle capfrations.

U In chapter 3 the influence of the external acoustic force on the dynamics of
solid particles will be investigatd. Complex dynamics of small particles under the
action of acoustic radiation force will be studied. This work extends the previous
studies of Ostrovsky & Sarvazyan (2009) and Ostrovsky (2015) in two aspects.
Firstly, in this study in contrast to the previous worikee particle material can
have an arbitrary compressibility and sound speed. Secondly, in addition to the
viscosity effectdescribed by the Stokes drag force, the Boussi@aspet drag
force and the inertial force which includes added mass effect will be accounted for.

U Chapter 4 contains a study of resonance properties of forced oscillations of
solid particles and gaseoushbinles in a viscous fluid at small Reynolds numbers
taking into account both Stokes aimtiegralmemorydrag forcesSmall oscillations
of micro-particles and gaseous bubblesainiscous fluid aroundheir equilibrium
states will be considered under thei@t of a sinusoidal external force. Exact
solutions to the governing integthfferential equations containing both Stokes and
memoryintegral drag forces will be obtained and analysed graphically. The main
aim of this study is to clarify the influence thfe memoryintegral drag force on the
resonance characteristics of oscillating particles or gaseous bubbles in a viscous fluid
at small Reynolds numbers. The resonant curves (amplitude versus frequency of
external force), as well as phasequency deperahces will be obtained for both
these particle typesand compared with the corresponding dependences of the
traditional oscillator with the Stokes drag force omigluded

U Chapter 5 containthe conclusion and discussions of results obtained in the
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Thess, as well as the perspectives of further research.
U In Appendix | present a Fortran code which was used for the numerical
modelling of particle motion in a viscous fluid under the action of acoustic radiation

force.
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Chapter 2: Dynamics of charged partites in a creeping flow

2.1Introduction

In this Chapterthe dynamics of charged and interacting solid particles in a
viscous fluid will be studied. We consider a simple model of two particles moving
either sideby-side or one after another along themgavertical line under the
influence of the Archimedean (buoyancy) and gravity forcés Coulomb
electrostatic forcéor its modificatior), andthe viscous drag force. The drag force
consists of two components: the qusakitionary Stokes drag force aribe
BoussinespBasset drag force resulting from the unsteady motion. Solutions of the
governing equations will be analysed analytically and numerically for the caaes of
perfect fluid andfor a viscous fluid The results obtained for these two cases will
bethencompared.

2.2 Equations of notion and problem formulation

A motion of an individual uncharged particle in a viscous fluid at small
Reynolds numbers in the creeping regime has been studied (Stepanyants & Yeoh,
2009). It has been demonstrated timathe case of a transient flow the influence of
the BoussinesgBasset drag (BBD) force (Gorodtsov, 1975; Lovalenti & Brady,
1993; Kim & Karrila, 2005) is very important. It providedifferent character of
particle motion in comparison with the wéhown Stokes drag (SD) force
(Batchelor, 1970; Landau & Lifshitz, 1988). We consider heemotion of two
electrically charged particles in different setups taking into account all forces
mentioned above. The specific featureted BBD force is in its deperehce on the
motion prehistory, which results in the appearance of an integral term in the
eqguation of motion. We also take into account a reciprocal influence of particles on
the hydrodynamic drag force which depends on the particle configuration (Happel
& Brenner, 1983). Tahe best ofour knowledgethe combined effect of all these

factorshasnot beenstudied thus faby other authors

As a first step we consider two identical metallic particles with electric charges
of the same absolute value (they dam either of like or unlike charges). As has
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been shownby Saranin,(1999), the electrostatic force acting on metallic particles
deviates fronthe one predicted by the classical Coulomb law for point particles: at
small distances the force is not inveysptoportional to the square of the distance
between the particle caes. This deviation is important at relatively small
distances between the particles while at large distances the electrostatic force
asymptotically approaches the classical Coulomb [&ae exact expressions for

the electrostatic forcEs as derived by Saranin (1999) and its asymptotic Coulomb
approximationF are as follows,

q’> r,-r, S(b)
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where a is the particle radiusq is the value of the electric charge,is the
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The parametek, is taken ask, =n 4 for like charged particles arak 4, =0 for

unlike charged particles.

Figure 21 shows the dependences of the attractive and repulsive electrostatic
forces(normalised bythe factorg?/(16“-a?) as described by Equation (2.1) and the
corresponding Coulomb forces underetldame normalization as described by
Equation (2.2). As one can see from this figure, corrections to the Coulomb forces
become notable only when the distance between the particle centers is less than 4
The modified attractive force infinitely increasesem the particles approach each

other (see linel in the Figurel.

When a solid particle moves in a viscous fluid, it experiences an influence of a
drag force (Batchelor, 1970; Landaul&fshitz, 1988). In the presence of another

particle the drag forcemodifies and depends on many factors, includihg
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particle shapethe distance between them, their reciprocal orientatenmd their
velocities (Happel & Brenner, 1983). The correction to the gsiionary SD
force acting on particle in the preserafeanother particle can be taken into account
through the effective viscosityesr = vf(ay, @z, ri, ro, dri/dt), wherev is the
coefficient of kinematic viscosity, anflis a rather complicated function of its
arguments. This function gradually redu¢esunity when the distance between the

particles becomes much greater than their radii.
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Figure 21: Normalised electrostatic force versus normsadl distance3 = x/a,
between two like (line 1) and unlike (line 2) charged particles as pertiBqua
(2.1). Dashed lines shotlie Coulomb approximations as per Equation (2.2).

Description of particle motion in a viscous fluid has a long history, however
until now only approximate equations describing viscous forces acting on a moving
particle whereobtained. Relatively good understanding of particle motion was
obtained for small Reynolds numbers (Re << 1) focalbed creeping motions. As
was shown in many papers (see, for example, (Lovalenty & Brea#l93;
Stepanyants & Yeoh, 2@), and referencetherein), there are two viscous forces,
one of then is theStokes drag forcevhich acts even when a particle uniformly
moves in a fluid, and anoth@rce, the memory integral drag force acts only when
a particle moves neaniformly. These results derivethd experimentally validated
for the individual particles should be modified when the motion of another particle
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accompanies a particle motion (the same pertains to the bubble motions with a
minor modification). Even for the motion of two partisler bulbles the viscous

drag forces depend on the spatial configuration of past@iéubbles, for example,
whether thg move sideby-side or onefteranother (see Figre 2.2). The
theoretical consideration afrag forces acting on a pair of particleas been
describedn the bookby Happel & Brenner (1983)ut details of particle motion
were not studiedThe results from this book will be used below in the study of
particle motionin the viscous fluidaking into account the modified electric forces

as per &ranin (1999kxerting on charged conducting particles.

I I

a) , b)

Figure 2.2: Two particles moving sidy-side in the direction normal to the line
connecting their cergs (a) and one after another along the line connecting their
centes (b).

To the best of our knowledge, modifications of the transient BBD force exerting
on a particle in the presence of another particle have not been studied yet. With this
in mind, we can consider two notional possibilities: (a) there is no correction to the
BBD force due to the presence of another particle, so that the BBD force remains
the same as for a single particle; and (b) the correction to the BBD force is
described by the same effective viscosity as the SD force. In what follows, both

these possibiligs will be explored and results will be compared.

Consider further two spherical particles moving in a viscous fluid in the

creeping flow regime, whe the Reynolds number is much less than one, Re << 1.
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The equation of motion of one spherical particléhmthe added mass effect taken
into account is (Batchelor, 1970; Landau & Lifshitz, 1988):

é 1 S
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whereg is the acceleration due to gravityjs the particle density, is the particle

to-fluid density ratio.

The addedmass effect is taken into account through the coefficient 1/2 in the
bracketson the lefthand side of the equation. The first term in the rigéwhdside
describes the gravity/buoyancy force, the second term describes the electrostatic
force and the thd term describes the total drag force including the SD force (the
first term in the square brackets) and the BBD force (the second, integral, term in
the square bracketsT.he function F [ 1 if the correction
ignored, or- [ f if the correction to the BBD force is the same as to the SD force.

The same equation with the indices interchanged holds for the second patrticle.

Subtracting and summing the equations for tligvidual particles, we obtain
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Below we consider two particular cases prticle configuration when they
move (i) sideby-side as sketched in Figure2d.and (ii) one after another as shown
in Figure 22b.

2.3 Two particles moving sideby-side

Considering the case of two partislmoving sideby-side as shown in Figure
2.2a and assuming that the ceatof masses of the system does not move in the
horizontal direction, we write down the scalar projections of Equations (2.6) and

(2.7) onto the horizontak, and verticalz, axes

d’x E dx 3 7 d* xd
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Functionsfi(x), f2(x), andfs(x) as well af1(x), F2(x) andF3(x) account for the
reciprocal influence of particles on the drag forces exerted on them (Happel

&Brenner, 1983). Functiong, f,, andf; can be presented in termstbk variable

x, =1/(2 ¥ as follows.

1 In the case when two particles move one after another with equal speeds in

the same direction along the line connecting theirreasnt
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f(x)°1-3x 972x 197 x93, 3877 x197; 53317 19821
20 10 2.10
76115 + =~ (2.10)

1

3 1+4x

1 Inthe case when two particles move with equal speeds on absoluéeival

the opposite directions along the line connecting theirreant

f,x)°1 8 x 92x 18] x93, x38%7 x197; 5334 19821

20 10 2.11
761150 + =4 (2.11)
3 1+ 4x,

1 In the case when two particles move with equal speed in the same direction

sideby-side in the direction perpendicular to the line connecting theitreg and

can freely rotate:

27 1107 64x°
f,(x)°1 3 X -?- X 59 J x—+3 . ;\;0 ; +31-—X . (2.12)
2 4 8 16 32 ¥ o

The graphs off; » {X) are shown in Figure 2.

Ueg

Figure 23: Functionsf; ,4X) versus x. The torizontal dashed line shows the
asymptotic value for allunctions when the particles are far away from each other.
The \ertical dashed line shows the minimal distance between the particles, in the

normalsed variablesx,, = 2.
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As have been mentioned above, the expressions for the funEtigax) are not
known thus far, therefore we will consider two cases, Whergx) * 1 and when
F124X) * f124X). Functionsf; » {X) asymptotically approach unity when- o,
and the corresponding drag force reduces to the dragdaxerted on an isolated
particle. However, whenx - 2, which corresponds to the minimum distance
between the particle centers (when the particles touch each othet=aPa), the
functionsfy(x) andfs(x) go to the finite limitsfi(x) = 0.647 andf; ,AXx) = 0.694,
whereasthe function f,(x) grows infinitely,fo(x) - Has x- 2,. The physically
unacceptable behawip of the drag forcesin this caseis the consequence of the
approximate character of the formular f,(x). Nevertheless, as noted in Ref.
Happel & Brenner, (1 9 8 3Hogkingfistates that good agreement on collision
efficiencies is obtained with his results and experimental data, so it is apparent that

under some conditions the approximate treatmesaisfactory .

Note that in the Coulomb approximation, when the distance between the
particles is much longer than their radii or when the charges of spherical particles
are localsed at their centes, the first term in Heption (2.6) takes the simple fim

E../x*. We will study the particle interaction in both cases, \lithexact formula
for the electrostatic forceFs as per Equation (2.1), and with the Coulomb
approximation for the electrostatic forEgas per Equation (2.2).

Equdion (2.8) is independent of (2.9) and can be solved separately. Once its
solution is found andv( ¢ is determined, Equation (2.9) céimen onlybe solved

sinceEquation (2.9) containg( ¢ via functionsfs(x) ard F3(x).

For computations we used the following values of parameters: water density
r =10’ kg /m*, water kinematic viscosityn =6.05 @0’ m? /s, particle radius
a=5@®°m 50mm, charge values are equal t@=1.6 €0'°C, water

permittivitye = 6.954 @0 F /m, particleto-water density ratior =2.7 (this
corresponds t@an aluminium mote). Based on these parameters, the dimensionless

parameters are€__=3.784 ®0° and G =8.272 0.
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2.4 Particle dynamics in a inviscid fluid

Assuming that two particles with equal chargésbsolute value are initiallgt
rest, let us study first the reference case, when the fluid is perfect and viscosity is
absent (formally we pufi24x) = Fi24x) * 0). Then, Equation (2.8) in the
Coulomb approximation can be solved analytically; solutions for the like and

unlike charged particles can be presented in the implicit forms,

X, (2r +1) +1) e
- 2E,

(2r +1)€ & X p

rctan , -—

e é’g - X 2

The former solution corresponds to the repulsive case when x, whereas

\/ )Xu E., Os (2.13)

ﬂ
' LX) E, 0 (2.14)
B

-|-o:> (@]

the latter corresponds to the attractive case when .

The lution of Equation (2.9) without visedy is trivial T it is simply the
motion from the rest with the constant acceleration,

G(r-1)g°
2(2r +1)

2(9= -

Eliminating / from the expression®r x( § andz( §, we obtain the particle
trajectories in both cases of particle repulsion or attraction:

2
a

(x x,) M E. Os (2.15)
H

- { +

n N &N X,
X - 6(-\/—X

G(r-1)x,@
z( §= Me()%rctan X Fq
4E, "% \/ Xp- X 2

The ®lution of Equation (2.8) beyond the Coulomb approximation can be

G(r— 1)X e)(
4E @2

es

z( =

es

2

- (5 x)2 ﬁ E.. 0(2.16)

¢

|-3D: Ot

readily obtained numerically. The equation was integrated by the founltr
Rungé Kutta method with the fixed integration step using Mathtddsoftware.
The infinite sums in Equation (2.8) veereplaced by finite series containihg=
200 terms. The results for attractive and repulsive particles are shown in Figure 2.

bythes ol i d | i nhkes thétrajectoreks fdr Mje repulsive particles are
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labdled by dashed numbers and go to the right, whereas trajectories for the
attractive particles go to the left. In that figure we also show the analytical results
obtained in theCoulomb approximation as per Equations (2.15) and (2.16); they

are shown by dashed | ines 2 and 2N, Lin
viscous fluid when both viscosity coefficients for the SD and BBD forces are
equally modified by the function(x) as per Equation (2.11) for the horizontal

motion and f3(xX) as per Equation (2.12) for the vertical motioh detailed
discussion of the viscosity effect will begsented in the next subsectidmnes 3

and 3N pertain to tbefoanse ahdekaneselbea
Coulomb approximation. In all caseshown in the figurgthe particles started to

move from the rest when the distance between them was 4 in dimensionless units.

Attractive particle collision occurs when the diste between them becomes 2.

As one can see from this figure, the particles collide in a finite time, when they
are attracted by each other dueth® electrostatic force. The collision occurs
earlierwhen the exact electrostatiorte is taken into consideration compared to
the case othe Coulomb approximation. Accordingly, the vertical distance travelled
by the particles before they collide is less for the former case compared to the latter
case This can be seen by comparitrgjectories 1 and 2, as well as 3 and 4 in

Figure 2.5.

The situation is opposite when the particles repulse each other in the perfect
fluid: in the case of exact electrostatic fartdee horizontal motion is slower than in
the case othe Coulomb approximatin. Ther ef ore, trajectory
|l ies below the trajectory 2N in the | at
from each other to infinity. The observed motion is the direct result of the
difference between the exact electrostatic fercecomparison with the Coulomb
force. The exact force is larger than the Coulomb force for the attractive particles

but smaller than the Coulomb force for the repulsive particles (Figliye 2.

When the distance between the particles becomes largexdloe edectrostatic
force quickly reduces to the Coulomb force (Figurg).2However, if the particles
start moving at a relatively small distance between them, the time lag of trajectory

2Ny relative to trajectory 1Nj stildl occur
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In aviscous fluid the reoulsive particles move faster the horizontal direction
when the Coul omb approximation is wused.
trajectory 3N which corresponds to the e
a consequence of a complicatedaracter of the modified BBD force with the

variable viscosity coefficients. We will refer to this issue in the next subsection.

Figure 25 illustrates the variation of relative particle velocity in the horizontal
direction versusthe distance betweethem. Whenthe particles attract each other
their relative speed at the moment of collision fat 2) is higher when the exact
electrostatic force is consideredathin the case othe Coulomb approximatioms

shown bylines 1 and 2n Figure 25.

~
=)

0 0
-50r -50
-100f -100
-150 -150
-200 -200
2 3 5 6

U

Figure 2.4 Particle trajectories: vertical position of particlesagainst the distance
between themy; in the dimensionless variables.

When the particles repefrom each other, their relative speed varies with the
distance almost equally both in the case of exact electrostatic force and in the
Coulomb approximationt her ef or e | e praetallylindjistiaguishab®2Nj a r
from each other.

In a viscous fluid the horizontal speed othe particlesis always greater when

the exact electrostatic force is used in comparison with the Coulomb &srce
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shown bylines 3ad 4, as wel | in&igurel2i5 Natice thatNipe a n d

4

vertical scale for the viscous case repr

right) is 20 times greater than in the inviscid case (shown on the left) represented
by | ineasnd,6 2M., 1 Nj,

af

0.04 . : 2,10
-F r "}'
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0.01} 150074

_0.02P\4 111073

_0.05.° 1-2.5107°
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Figure 25: Relative horizontal velocityu(x) of particles against the distance
between them in the dimensionless variables. Curve numbering corresponds to

Figure 24. The vertical scale for the viscous case represented by3inés3 ,
and 4 _ is shown on the right.

2.5 Particle dynamics in a viscous fluid

The description of particle dynamics becomes much more complicated when
viscosity is taken into account. The simplest case is the motion of uncharged
particles withEes=0. Cansider first the case when the initial distance between the
particles is so large that functiohs x) andF; , AX) can be replaced by unities. In
suchacase the set of equations (21§R.9) can be solved analytically (Stepanyants
& Yeoh, 2009), howver, the solution is very cumbersome. Here we only present

the universal asymptotic form of solution for large tigh@ssuming that particles

commence motion with the zero vertical velocitie$0)* d z/ d g, =0, but

with the nonzero relative hodontal velocityu(0)* dx/ d 4,., = u,,
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X, (g=@1 +2r ),

Lol &9)0

Z(g= G(r l)22(4 ry 6

e

3
Ny

32r+1u,

-, 2.17
o (2.17)

6u..( ¥

q a a 3
%-Vas( )q G(F LDl — - (218)
: b

If the distance between the particles is not large enough, then funttiofe)

andF; » {x) cannot be replaced by uniieNeitherthe Equation (2.8)or Equation

(2.9) is integrable in this case, therefore they were integrated numerically by means

of a Fortran code using the fowtinder RungéKutta scheme and the standard

RKGS

subrout.i

ne with Gitd durdssin HEguation {2i8) a t

were replaced by finite series witki=400 terms. The numerical code has been

tested against the exact analytical solutions (Stepanyants & Yeoh, 2009) and

demonstrated quite reliable results. Examplestleé numerical solutions of

Equations (2.8)(2.9) with the different models of visctgiare presented in Figure

2.6.

b
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sop 1 74 1-50
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Figure 26: Particle trajectories ira viscous fluid with the different models of

viscosity.

Li nes 3,

3 Nj

and 4, 4 N4, iarire 3 represents éhme

trajectory of attractive particles when exact electrostatic force is considered and

viscosity coefficients are modified in accordance with Equations (2.11) for the

horizontal motion and (2.12) for the vertical motion. Line 4 reprssehe
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trajectory when the Coul omb approxi mati o
and 4N represent t he traject ahe iead for
electrostatic force and in the Coulomb approximation correspondingly. As one can
see, n the repulsive casd r aj ect ori es 3N and 4Nj ar e
whereas in the attractive case the difference between them is quite noticeable at
small distances between the particles. In what follows we considertlombxact

electrostatic foce.

Linesland1l Nj repr esent tigsia the atradtiveandrepulsive aj e c t
casa respectivelywhen only the SD force is taken into consideration with the
constant viscosity, i.e. when the influence of another particle is ignored, as well as

influence of the BBD force.

Linesband5 Nj repr esent tidsia the atradtiveandrepulsive aj e c t
casa respectivelywhen only the SD force is taken into consideration with the
modified viscosity as per Equations (2.11) and (2.1and the influence of the

BBD force is ignored.

Lines2 and2 Nj r e phe parsictertrajectaesin the attractiveand repulsive
casa respectivelyhen the SD force is taken into consideration with the modified
viscosity, as per Equations (2.11) and (2.1apd the viscosity coefficient for the

BBD force is assumed constdft;= 1.

As one can see fronthe figure the model with onlythe SD force witha
constant viscosity provides results which significantly differ from the resuliseof
other models with variableiscosity and BBD force. In the meantime, lines 5 and

5Nj are very clrespeetivdlyo | i nes 3 and 3N;j

This indicates that the BBD force does not play a significant role in comparison
with the SD force in such motions and, hence, can be neglected. Rigure
illustrates the variation of relative particle velocity in the horizontal direction
against thedistance between them. Line labels in this figure correspond to the
labels ofthetrajectoriesusedin Figure 26. Only the vertical scale of line 5 (buttno

l'ine 5N!) is 10 times compressed in comp

Observe that qualitatively the difference between the exact and Coulomb cases
is similar to that shown in Figure £.Namely, for the attractive particlethe

horizontal motion is fastewhen the exact electrostatic force is considered, while
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for the repulsive particles the horizontal motiorslightly faster when the Coulob
electrostatic force is used.

It is interestingto notethat at the initial stage of motion the relative horizbnta
speed increases very rapidbfter whichthe speed contingdo increag, butat a
moderate rate, and then after reaching a maximum value decreases ftthge to
strong influence othe drag force correctioffiy(x) caused by the close presence of
the second particle. this correction is ignored, then the relative horizontal speed
monotonically increases until particle collisiohhis is seen by compaan of line

1 with other lines 25 in Figure 27.

2107 - - - 0.01
=
r"--._:_“__‘-“_
T
5,107 - 1251073
»
11073 15107
_2.5107° _0.0125

4,107 ' _0.02
6

2 3 4 5

Figure 27: Relative horizontal velocity of particlea(x) against the distance
between them in the dimensionless variables. Curve numbering corresponds to
Figure 26. The vertical scale for lines 1 and hre shown on the right. Labels for

lines 2 and 3 are not shown; these two lines are very close to each other and are
disposed between the line'sahd 5.

As has been noted, in the attraction case the relative horizontal speed is high for
the case of exact electrostatic force in comparisotnédCoulomb approximation.
It is also interesting to note that both the dcagrection factorfy(x) and the
electrostatic force infinitely increase when the attractive particles approach each

other i.e., whenx- 2. However, the influence of a variable vissaerm prevails
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over the electrostatic force resulting in the speed deceleration at the moment of

collision.

2.6 Two particles moving one after another

Consider now the case when two particles move one after another as shown in
Figure 22b). Equations of mtion in the scalar dimensionless form follow again

from Equations (2.3):

d?x E dx 3 7d> xd »h

2r +1 = =35 f(x)— = , 2.19
2 q 2

(2r+1)dz dz 3 _d zd #h (2.20)

=G 1 f — :
dq? (r )’ 1(X)dq\/;_ruld 2/7\/0‘ /

where z =(z +z)/2Ris the dimensionless coordinate of the massreemind

the othe dimensionless quantities aasdefined after Equation (2.9The function

f1(x) is asdefined in Equation (2.10).

Equation (2.19) describes time variation toke relative distance between the
particles; it is exactly the same as in Equation (2.8), edeerEquation (2.20)
slightly differs from Equation (2.9) due to the replacement of fundjo) by the
function fy(x). The difference between these two functions islae as one can
see from Figure 3, thereforethe solution ofEquatiors (2.19) and(2.20) does not
differ too much from the solign of Equatiors (2.8) and (2.9).

In Figure 28 we present a comparison of two trajectories when the exact
electrostatic force was used with the modified viscosity coefficient of SD force
only, whereas the BB@orce was taken with the constant coefficient. Lines 5 and
5N pertain to the cdysel dweh,enanpdarltiince se s6 neol
the case when particles move vertically one after another. In tteg tase the

drag force for the motiorof mass cemé is less than in the former case

(f,(x) < f,( ¥, therefore the traversed path by mass reeiefore the particle
collision in the latter cas«éz0 -166.5) is slightly largerthan in the former case

(z° 148.5).
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Figure 28: The trajectories of two particles moving sibgside (lines 5 and'p
and vertically one after another (lines 6 andi® a viscous fluid.
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Figure 29: Relative velocity and the velocity dhe mass ceme of two particles
against the distance between them in the dimensionless variables. Lines 5,6 and 5
6 _ pertain to the relative velocity of attractive anguksive particles. Lines 7, and

7_ pertain to the siddy-side vertical motion of two particlespd lines 8, and '8
pertain to the vertical motion of two particles one after another. The vertical scale
for lines 7, 8, 7 and 8is shown on the right.
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Because Equations (2.8) and (2.19) are the same, the relative particle velocities
are equal in theorresponding cases of sidg-side and vertical motions (see lines
5, 5Nj and 69). B e viertical fbtigruof raass2cess in these two
cases is slightly different because of the difference in Equations (2.9) and42.20)
shown bylines7 7Nj and 89. 8Nj in Figure 2.

2.7 Conclusion:

We have considered the dynamics of two unlike and like charged particles in
viscous fluid in the creeping flow approximation. Relative particle dynamics have
been studied under different models of electrostétirce acting between the
particles: the force between two conducting spheres as derived by Saranin (1999)
and Coul ombds f-likepartcled &wovypes of vigtaus dnag forces
were taken into consideration: the quskitionary Stokes dragoffice and the
transient Boussines@asset drag force. Different models of viscous drag forces
were analysed, when the viscosity coefficient is constant, in the case of a single
particle, and when it is modified due to the presence of a second pa#icle.
comparison of particle trajectories under the influence of all these forassnade

and compared with the caseafinviscid fluid.

Using the typical value of parameters (see the paragraph before the subsection
2.3.), we obtain that two aluminium micpat i c | e s o fm approachiadgi i 50
each other f r o mm traeese 45 ram ia the gerticlOddrection
before the& collision. The maximal relative velocity between the particldd 44

mm/s, and their vertical velocity attais2.28 cm/s.

Results obtained can be useful for the development of control methods of micro
and naneparticle dynamics in viscous fluids in application to technological
processes and medicine (Sarvazyan & Ostrovsky, 2008).theoretical analysis
presented in this Clpger provides us with the estimates of typical particle approach
speeds, terminal velocities of falling down particles in viscous fluids, and traversed
paths. This can be used in the development of facilities for the control of particle
motion by externaforces, acoustic or electrmagnetic. Such estimates will allow
researcher and engineers to estimate further the characteristic values of field

strengths for the effective control of particle motion. This can be especially
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important for preventing particke ensembles from sticking together and
aggregation. In some cases, contrary, estimates of strength of external fields can be
useful to develop a device, which promotes effective gathering of all particles

together.

The content of this Rapteris based onhe published paper: Hassad.K. &
Stepanyants Y.A. (2015). Dynamics of two charged particles in a creeping

flow. Journal of Physical Mathematics. 6, n. 2, 7 p

In this Chapterpnly two charged particlesere consideredsthe simplestbasic
model to demonstratehe main physical effectsand gain insight in the complex
problem However, the results obtained can be further generafaretthe ensemble
of many particleqsee, for example, (Sazhin et al., 2008Vt this will lead to the

serious compliation of equations and interpretation of results
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Chapter 3: Particle dynamics in a viscous fluid under the action of acoustic
radiation force

3.1 Introduction

Complex dynamics of small particles under the action of acoustic radiation force is
consiceredin this chapter This work extends the previous studies of Ostrovsky &
Sarvazyan (2009) and Ostrovsky (2015) in two aspects. Firstly, here the particle
material can have an arbitrary compressibility and sound speed, whereas in the
previous papers thaeuthors considered only the limiting case of hard particles with the
infinite sound speed. Secondly, in addition to the viscosity effect described by the
Stokes drag force, the BoussineBasset drag BBD) force and the inertial force
together with the adsl mass effect are accounted for. Although, as was assumed in
the earlier publications, the latter effects are usually small, howéwear influence
can be noticeable in specific cases considered inctlapter. The control of particle
motion by switchng of acoustic modes in a resonator is also studied for particles of
different properties. Quantitative estimates are given for particles made of different

materials.

3.2 The governing equation for particle motion in a standing acoustic field

Consider theequation of motion of a small (as compared to the sound wavelength)

spherical particle of density, and radiusa in a fluid taking into account the Stokes

drag force,an added mass effect, artie transien BoussinesiBasset drag force
(Stepanyants & Yeoh, 2009):

a r; 8dr dd a dt @ O
+—L 0y =6 e —F— — oF.¢ 31
?p 2 ép dt2 pf,vagdt pV_r:quz t- qg a ( )

wherer is the particle coordinate;, is the fluid densityy is the kinematic viscosity
of a fluid, andv, is the particle volume. The added mass effect is taken into account

for a spherical particle through the facter /2 included inthe inertial term o the
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left-hand side of the equation. The first term in the brackets in the-hagid side

together with the coefficientp v, represents the Stokes drag force, whereas the
second integral term in the brackets together with the coeffigentv, represents the

BBD force (details can be foundge,. in Refs. (Lovalenti & Bardy, 1993; Stepanyants
& Yeoh, 2009; Landau & Lifshitz, 1988)). The expression for the period averaged

acoustic forceF, acting on a small spherical particle has the form (Gorkov, 1962)

Fa: -B, U 2 B3%<rijc>z f1 <u232> fz ; (32)
¢ B

Here the angular bracket&8 § denote period averaging of the wave pres$re

andtheacoustic velocityu,, and

2

cr ro- r
=1 —, f, 2T (3.3)

Colp 2 K+ f

f

where ¢ and ¢, are the sound speed values ithe ambient liquid andhe particle

material, respectively.

In many practical cases for small particles in Equation (3.1) the viscous Stokes drag
force dominates over the BBD force and effect of inertia. In such cases (which we call
the quasistatic appoximation) the balance between the radiation force and Stokes

drag force yields:

u, = 2, (3.4)

Below we examine the influence of factotisat were ignored in the previous
publications (Sarvazyan & Ostrovsky, 2009; Ostkyw<2015) and consider a standing
acoustic wave in a resonator. We will study first a plane resonator with a single
acoustic mode and two modes periodically switching on and off to replace each other.
Then a more complex cylindrical resonator will be staldi
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3.3 Solid particle dynamics in a plane geometry

3.3.1 Single mode regime

Consider first standing waves in a plane resonator of a léndtat a wave with the

amplitudeP, be defined as

p, = F?)C()skxsir( D ft) , u = Ro sinkx CO@ 27f9 (3.5)

I+ Cy

where k =2p/ /is the wavenumber/ is the wavelengthand f is the frequency of
theacoustic wave.

Substituting this into Equation (3.1) we obtain the radiation force in the form (see,
e.g., (Ostrovsky, 2015)):

V_kP?
F(x) = —— F(r,s)sin 2kx, (3.6)

fr

wherethefunction F (r,s) is defined by the formula

5r-2 1
B iy &0

Herethe values of andsare givenbyr=r_/ r, ,ands = c /c,.

Accordng to Equations (3.4) and (3.6), in the plane qisasiic case the particle

velocity has the form

. 4pfx
u(x)= - r,s)sin . 3.8
) 9rici n tr.s) c, (38)

The function F defines a dependence tfe particle dynamics orthe physical

propertes of a particle with respect to the parameters of the ambient fluid. Figure 3.1

shows the 3D plot ofhe function F (r,s). As one can see, this is a smooth surface

which asymptotically attains the maximum valie, , =5/2, when r infinitely

increasedor any finite nonzerovalue ofs. This limiting case - © was studied by
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Sarvazyan & Ostrovsky (2009). Here we consider a range of parameteds within

the framework of general equation (3.1).

Notice that functionF (r,s) can be of either sign. For relatively soft particles with

s < s this function is negative, where

g=_2*t (3.9)

Figure 3.1: Dependence of functidh on the parameters and s as per Equation
(3.7).

In particular,F (r,s) is negative regardless tife value okif r < 2/5. Below we
will consider one case of light particle motion with a negafiver,s) and compare

the result with the cases of particle motion with the positive valu€s(ofs) .

In what follows we shall use the dimensionless form of Equation (3.1) (cf.
(Stepanyants & Yeoh, 2009)):

dzx_d 3 .d®> xd J

dt? t Jp Vd x g

where x=2p/KL, t/ ,g a&/%,n is the mode number, and

sin(nK x) , (3.10)

31“

(2r +1)

2pa

=51 ﬁ - F(r s). The length of acoustic resonatorcan be expressed in terms of
I 1c;
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the wavelength / of a sound wave or in terms of a frequendy

L=n//2 =nc,T/2 =g /2 f, where the mode number determines the number of
half-lengths ofthe acoustic wave in theesonator.

For comparison, in specific calculatignse use the parameters similar to those
used in Sarvazyan & Ostrovsk®009); name}, the ambient fluid is a water, for which
we take the following parameters &t= 20 C: r =10’ kg /m’, ¢ =1500m /s and
v=10°m 7s. For the particle radiyswe choosea =10 mm, for the length of a
resonatorwe setL = 2 mm and for the amplitude of acoustic pressune use

P, = 200 KPa. With these parametense obtaing = 1.1 @ % for Equation (3.10).

As mentioned, different particle materials were used in this study for quantitative
estimates.In Table 1 the value$or eachparameter for different particleypes are

presented.

Table3.1: The values of parameters for different partigiges

) Alumi- ) ) . Biological | light

Particle type . gold ice plexiglas | silica ]
nium cells particle*)

r,, Kg/m 2.700° | 19.320° | 0.9700° | 1.1830° |2.240° | 1.1G0° 0.240°
r=r,lr 2.7 19.3 0.97 1.18 2.2 1.1 0.2
c,, m/s 6400 3240 3980 2600 6000 1.575 1500
s = c,/c 4.267 | 2.160 2.653 1.733 4.0 1.05 1.0
F(r.s) 1.777 |2.375 | 0.823 |0.879 1.638 | 0.269 i5.714

*) As an example we consider a small density gaseous particle (a bubble) covered by a
solid solvable shell. Such particles can be used to transport gaseous contents, for
example, ifmedicine and food technology.
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In Sarvazyan & Ostrovsky2009) the basic equation of motion (3.1) was studied in
the dimensional form in the quastatic approximatio, when both the inertial terrmo
the lefthand side and BBD forcenahe righthand sidewvere neglected. Firstve will
consider a similar case when a particle moves in a viscous fluid under the action of
acoustic radiation force, batsotakesinto account arbitrary particle propertiggch as
density and sound speed in the particle matdnahis case equation (3.10) is reduced

to
ax_ -sin(Knx) (3.11)
d¢ ' '

Solution to this equation can be readily obtained (cf. (Sarvazyan & Ostrovsky,
2009); a typo in that paper is corrected here):

2 e akKn 8 kne
X = —arctané targ;e— ¥ @
e Q 2 -

— (3.12)

e R

wherex, is the initial position of the particle at=0.

The full equation (3.10) was solved numerically for three different partyges
infinitely hard and dense (as the reference case), alumimind ice. These solutions
together with the approximate analytical solution (3.9) are shown in Figure 3.2. For the

first reference casall parameters were chosen the same as in Sarvazyan & Ostrovsky,
(2009) with the same initial conditions x,=2.1840, V,* (dx/dj|_ =i 0. 0,

and parameten = 8. We have tested the influence of the integral BBD term, as well as
the inertial term and found that it was smadl shown irFigure 3.2 Line 1 in Figure

3.2 illustratesthe approximate solution (32) for the reference case wil=5/2, and

the dots show the numerical data when all factors in Equation (3.10) including the
BBD force were taken into consideration. The inset representsdbeified portion of

Figure 3.2 and demonstrates the difference between the approximate (line 1) and
numerical solutions (dots) for the reference case when the particle approaches the

equilibrium state.

Similar calculations were carried out for other paescwith different properties. In

all casesthe influence of the inertial effect and BBD force was relatively small, except
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the initial period of motion (see below). Figure 3.2 shows the corresponding plots for
particles of a moderate density (aluminiums 2.7, s=4.267, F = 1.777) and of a

relatively small density (icey =0.97,s =2.653F =0.82). For a relatively dense
gold particle ¢ =19.3,s =2.16,F =.37) the result is close to line 1 in Figu3.2; it

is not shown separately to avoid figure complication.

Figure 3.2: Dependence of normalised particle position on time as per Equa$ipn (3.
(solid lines) for different particldypes Line 1 pertains to the reference case of
F =5/2 (very dense incompressible particle), linei2an aluminium particle

(F =1.777), line 371 an ice particle £ =0.823). Dots show the numerical results

when all factors including the BBD and inertiadesare taken into account.

Figure 3.3 shows the dependence of particle speed on time for the same values of
the parameterF as in Figure 3.2, and Figure 3.4 shows the dependence of particle
speed on the distance from the equilim point. In the latter case the approximate
theoretical dependence (3.11) is universal for all sorts of particles (see line 1 in Figure
3.4). The numerical data obtained with the inertial and BBD forces are almost similar
to each other, but they slighittleviate from the approximate theoretical lines. A small

portion of Figure 3.¢R), is magnifiedand presented in Figure 30). From the latter
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