A Closed Device to Generate Vortex Flow using PZT

Phong Nhu Bui1, Thien Xuan Dinh2, Hoa Thanh Phan3*, Canh-Dung Tran4, Tung Thanh Bui5 and Van Thanh Dau6*

1Faculty of Electronic Engineering, Hanoi University of Industry, Hanoi, Vietnam; 2Graduate School of Science and Engineering, Ritsumeikan University, Kyoto, 525–8577, Japan; 3HaUI Institute of Technology, Hanoi University of Industry, Hanoi, Vietnam; 4School of Mechanical and Electrical Engineering, University of Southern Queensland, QLD 4350, Australia; 5University of Engineering and Technology, Vietnam National University, Vietnam; 6Research Group of Environmental Health, Sumitomo Chemical. Ltd, Hyogo, 665-8555, Japan

*E-mail: phanthanhhoa@haui.edu.vn; dauthanhan@gmail.com

Abstract- This paper reports for the first time a millimeter scale fully packaged device which generates a vortex flow of high velocity. The flow which is simply actuated by a PZT diaphragm circulates with a higher velocity after each actuating circle to form a vortex in a desired chamber. The design of such device is firstly conducted by a numerical analysis using OpenFOAM. Several numerical results are considered as the base of our experiment where a flow vortex is observed by a high speed camera. The present device is potential in various applications related to the inertial sensing, fluidic amplifier and micro/nano particle trapping and mixing.

I. INTRODUCTION

Vortex flow which offers an efficient solution to create micro vortices is a potential technique to transport and then concentrate micro-particles into a predetermined location and to enhance the mixing of particles [1], [2]. For example, ion wind based vortex and asymmetric flow generated can be applied to increase the concentration of biological samples, shorten the cultivation time and detect the physical properties of the flow [3]–[6]. Vortices generated inside chambers were used to trap, collect and manipulate rare cell [7], [8].

As we know, flow in a closed system possesses several advantages, such as minimizing the number of analyzed samples and partial/complete freedom from the contamination by environmental variations [9]–[13]. With the introduction of circulatory flow, the integration and miniaturization of measuring systems significantly enhance the capability and impact of microfluidic systems [14]–[16]. The circulatory flow in a confined space is applied mostly in the inertial sensing and particularly angular rate sensing where the advantage of a self-contained valveless micro-pump reduces the risk of damage to mechanical counterparts [17]–[26]. The vortex based inertial fluidic system has been described in several publication [27]–[29].

While vortex flow has been played an important role in microfluidic systems, the techniques to create a vortex flow have either been represented incompletely or included only an external pump which is bulky and expensive. Thus, a self-package device generating micro vortex flow in a closed system will be studied and reported for the first time in this paper. A conventional PZT diaphragm is utilized to circulate a flow inside a closed system. A vortex flow with high velocity is observed and successfully investigated by both numerical simulation and experiment.
Consider the present designed device which includes a disc-cylinder whose dimensions are 20 mm (diameter) × 5.5 mm (length) with a pump chamber in one side and a vortex chamber on the other side as described in Figure 1.

The pump and vortex chambers are connected each other via four driving channels with a diameter of 1.5 mm each at the outermost edge of the cylinder. At the center, the cylindrical feedback chamber with a diameter of 3 mm is connected to the vortex chamber by the four connecting channels to form a rectifying nozzle.

The pump chamber is actuated by a PZT diaphragm which periodically vibrates under an applied voltage and makes the volume of pump chamber shrinking and swelling. Thus, the gas/air inside the chamber is alternatively expelled and sucked in each vibration cycle. Due to the rectification of the nozzle, a small net flow is generated inside driving channels in each cycle. The net flow propagates into the vortex chamber, circulates and then moves back the rectifying nozzle through a feedback chamber. The circulating flow together with its momentum dramatically amplifies the rectifying effect of the nozzle. After certain circulations, the velocity and also the momentum of flow reach values enough high to generate a vortex inside the vortex chamber.

The circulating flow in channel is governed by the following equations:

\[
\frac{\partial p}{\partial x} + \nabla \cdot (\rho \vec{u}) = 0
\]

\[
\frac{\partial \rho \vec{u}}{\partial t} + (\vec{u} \cdot \nabla) \rho \vec{u} = -\nabla p + \nabla \cdot (\mu \nabla \vec{u})
\]

\[
\frac{\partial c_p T}{\partial t} + (\vec{u} \cdot \nabla) c_p T = \mathcal{L} \left(\nabla \cdot \vec{u} \right)
\]

where \(\vec{u}, \rho, \) and \(T \) denote the velocity vector, pressure, and temperature of the flow field, respectively; \(\mu = 1.789 \times 10^{-5} \) Pas, \(\rho = 1.2041 \text{ kg/m}^3, \) \(\lambda = 2.42 \times 10^{-3} \text{ W/m K}, \) and \(c_p = 1006.43 \text{ J/kg K} \) are the dynamic viscosity, density, thermal conductivity, and specific heat of gas, respectively. Since the working gas is air, the relationship between the pressure and density follows the state equation of an ideal gas

\[
\rho = \frac{M_w}{R_u T}, \quad \text{and} \quad \rho c_p T = \frac{M_w}{R_u}
\]

where \(M_w \) is the universal gas constant and \(M_w = 28.96 \text{ gmol}^{-1} \) the molecular weight.

Figure 2 presents the 3D model of the designed device together with its meshing for the simulation.

The boundary condition imposed on the diaphragm is derived from its vibrating rate \(v(\tilde{r}, t) = 2 \pi f \tilde{Z} \cos(2 \pi f t) \varphi(\tilde{r}) \) with the shape function \(\varphi(r) = (1 - (r/a)^2)^2 \), where \(a \) is the diaphragm radius and \(Z \) the center deflection of the PZT diaphragm. The transient solution is obtained by our program code developed in the environment OpenFOAM.

The pump and vortex chambers are connected each other via four connecting channels to form a rectifying nozzle. After certain circulations, the velocity and also the momentum of flow reach values enough high to generate a vortex inside the vortex chamber.

Numerical results by Figure 3 describe the velocity contour of the flow which depicts a vortex generated inside the chamber with a PZT diaphragm deflection \(Z \) of 20 \(\mu \text{m} \) (Figure 3b). Meanwhile, if the deflection is not sufficient, the flow is sucked backward the feedback chamber shown by red arrows in Figure 3a and thus, no rotating vortex is created.

Let \(U_r, U_\theta \) the components of the averaged velocity with time in a circulating cycle on the radial and azimuth directions, are given by

\[
U_r(r) = \frac{1}{2\pi} \int_0^{2\pi} u_r(r, \theta) d\theta, \quad (4)
\]

\[
U_\theta(r) = \frac{1}{2\pi} \int_0^{2\pi} u_\theta(r, \theta) d\theta \quad (5)
\]

where \(u_r(r, \theta) \) and \(u_\theta(r, \theta) \) are the radial and azimuth components of the local time-averaged velocity vector.

The \(U_r \) and \(U_\theta \) with the radial distance \(r \) are presented in Figure 4. Their profiles are similar to those by a flow of a blob vortex and sink and can be approximated by

\[
U_r(r) = \frac{K_r}{2\pi r} \left(1 - e^{-r^2/\epsilon_r^2} \right), \quad U_\theta(r) = \frac{K_\theta}{2\pi r} \left(1 - e^{-r^2/\epsilon_\theta^2} \right) \quad (6)
\]

where \(K_r \) and \(K_\theta \) are constant and represent the strength of vortex; \(\epsilon_r \) and \(\epsilon_\theta \) the widths of the blob vortex and sink, respectively. In this work, \(K_r = 59.4 \text{ m}^2/\text{s}, \) \(K_\theta = 82.7 \text{ m}^2/\text{s}, \epsilon_r = 1.63 \text{ mm}, \) and \(\epsilon_\theta = 0.75 \text{ mm}, \) using the least square method.
III. EXPERIMENTAL RESULTS AND DISCUSSION

A transparent prototype of the designed system as presented in section II and made of poly-methyl methacrylate (PMMA) is given in Figure 5. The system includes four tungsten hotwires (W-461057, Nillaco Ltd) with length of 2.4 mm and diameter of 10 µm each, which are set up inside the vortex chamber to characterize the flow. Lead pins (Preci-Dip) are installed in the device and work as hotwire holders.

In order to investigate the appearance of a vortex flow, particles suspended air is introduced in the device. Air flow is visualized via the motion of particles. Because the time scale for the particles’ motion in the main chamber is in the order of milliseconds, a high-speed camera, triggered by the power source of PZT membrane, is set up on the top of the device to capture the air motion (see Figure 4).

Figure 6 are the snapshots of the trace of particles at several times (200, 220, 240, 250, 260, 270, 280 and 290) µs. The figure proves the appearance of a vortex flow in the designed device as predicted by the numerical simulation in section II. A higher-resolution video is also recorded as a supplementary material and depicts that flows from the outlet of four driving channels are almost similar. Moreover, the vortex flow created is almost symmetrical in the vortex chamber. With hotwires already installed, the device is ready for the inertial sensing application and will be reported soon.

IV. CONCLUSION

A millimeter scale fully packaged device which generates a vortex flow of high velocity is reported. The flow actuated by a PZT diaphragm whose velocity increases after each circulation forms a vortex in a desired chamber. The design of the device is firstly conducted by a numerical analysis whose results are referred as the base of the experiment. Experimental results are in good agreement with our numerical prediction and a flow vortex is observed by a high speed camera. Both the numerical and experimental results demonstrate the potential of the device in various applications related to inertial sensing, fluidic amplifier and micro/nano particle trapping and mixing.
ACKNOWLEDGEMENT

This research is funded by Vietnam National Foundation for Science and Technology Development (NAFOSTED) under grant number 107.01-2015.22.

REFERENCE

