Survey of different data-intelligent modeling strategies for forecasting air temperature using geographic information as model predictors

Sanikhani, Hadi and Deo, Ravinesh C. and Samui, Pijush and Kisi, Ozgur and Mert, Chian and Mirabbasi, Rasoul and Gavili, Siavash and Yaseen, Zaher Mundher (2018) Survey of different data-intelligent modeling strategies for forecasting air temperature using geographic information as model predictors. Computers and Electronics in Agriculture, 152. pp. 242-260. ISSN 0168-1699

Abstract

Air temperature modelling is a paramount task for practical applications such as agricultural production, designing energy-efficient buildings, harnessing of solar energy, health-risk assessments, and weather prediction. This paper entails the design and application of data-intelligent models for air temperature estimation without climate-based inputs, where only the geographic factors (i.e., latitude, longitude, altitude, & periodicity or the monthly cycle) are used in the model design procedure performed for a large spatial study region of Madhya Pradesh, central India. The evaluated data-intelligent models considered are: generalized regression neural network (GRNN), multivariate adaptive regression splines (MARS), random forest (RF), and extreme learning machines (ELM), where the forecasted results are cross-validated independently at 11 sparsely distributed sites. Observed and forecasted temperature is benchmarked with the coefficient of determination (R2), root mean square error (RMSE), mean absolute error (MAE), Nash-Sutcliffe’s coefficient (E), Legates & McCabe’s Index (LMI), and the spatially-represented temperature maps. In accordance with statistical metrics, the temperature forecasting accuracy of the GRNN model exceeds that of the MARS, RF and ELM models, as did the overall areal-averaged results for all tested sites. In terms of the global performance indicator (GPI; as a universal metric combining the expanded uncertainty, U95 and t-statistic at 95% confidence interval with conventional metrics, bias error, R2, RMSE) providing a complete assessment of the site-averaged results, the GRNN model yielded a GPI = 0.0181 vs. 0.0451, 0.1461 and 0.6736 for the MARS, RF and ELM models, respectively, which concurred with deductions made using U95 and t-statistic. Spatial maps for the cool winter, hot summer and monsoon seasons also confirmed the preciseness of the GRNN model, as did the 12-monthly average annual maps, and the inter-model evaluation of the most accurate and the least accurate sites using Taylor diagrams comparing the RMSE-centered difference and the correlations with observed data. In accordance with the results, the study ascertains that the GRNN model was a qualified data-intelligent tool for temperature estimation without a need for climate-based inputs, at least in the present investigation, and this model can be explored for its utility in energy management, building and construction, agriculture, heatwave studies, health and other socio-economic areas, particularly in data-sparse regions where only geographic and topographic factors are utilized for temperature forecasting.


Statistics for USQ ePrint 34595
Statistics for this ePrint Item
Item Type: Article (Commonwealth Reporting Category C)
Refereed: Yes
Item Status: Live Archive
Additional Information: Permanent restricted access to Published version, in accordance with the copyright policy of the publisher.
Faculty / Department / School: Current - Faculty of Health, Engineering and Sciences - School of Agricultural, Computational and Environmental Sciences
Date Deposited: 22 Jul 2018 23:49
Last Modified: 22 Jul 2018 23:51
Uncontrolled Keywords: air temperature model; geographic information; energy modelling; data-intelligent models
Fields of Research : 08 Information and Computing Sciences > 0801 Artificial Intelligence and Image Processing > 080110 Simulation and Modelling
08 Information and Computing Sciences > 0801 Artificial Intelligence and Image Processing > 080108 Neural, Evolutionary and Fuzzy Computation
Socio-Economic Objective: E Expanding Knowledge > 97 Expanding Knowledge > 970105 Expanding Knowledge in the Environmental Sciences
Identification Number or DOI: 10.1016/j.compag.2018.07.008
URI: http://eprints.usq.edu.au/id/eprint/34595

Actions (login required)

View Item Archive Repository Staff Only