Calculating acute: chronic workload ratios using exponentially weighted moving averages provides a more sensitive indicator of injury likelihood than rolling averages

Murray, Nicholas B. and Gabbett, Tim J. and Townshend, Andrew D. and Blanch, Peter (2017) Calculating acute: chronic workload ratios using exponentially weighted moving averages provides a more sensitive indicator of injury likelihood than rolling averages. British Journal of Sports Medicine, 51 (9). pp. 749-754. ISSN 0306-3674

Abstract

Objective To determine if any differences exist between the rolling averages and exponentially weighted moving averages (EWMA) models of acute:chronic workload ratio (ACWR) calculation and subsequent injury risk. Methods A cohort of 59 elite Australian football players from 1 club participated in this 2-year study. Global positioning system (GPS) technology was used to quantify external workloads of players, and non-contact 'time-loss' injuries were recorded. The ACWR were calculated for a range of variables using 2 models: (1) rolling averages, and (2) EWMA. Logistic regression models were used to assess both the likelihood of sustaining an injury and the difference in injury likelihood between models. Results There were significant differences in the ACWR values between models for moderate (ACWR 1.0-1.49; p=0.021), high (ACWR 1.50-1.99; p=0.012) and very high (ACWR >2.0; p=0.001) ACWR ranges. Although both models demonstrated significant (p<0.05) associations between a very high ACWR (ie, >2.0) and an increase in injury risk for total distance ((relative risk, RR)=6.52-21.28) and high-speed distance (RR=5.87-13.43), the EWMA model was more sensitive for detecting this increased risk. The variance (R2) in injury explained by each ACWR model was significantly (p<0.05) greater using the EWMA model. Conclusions These findings demonstrate that large spikes in workload are associated with an increased injury risk using both models, although the EWMA model is more sensitive to detect increases in injury risk with higher ACWR.


Statistics for USQ ePrint 32246
Statistics for this ePrint Item
Item Type: Article (Commonwealth Reporting Category C)
Refereed: Yes
Item Status: Live Archive
Additional Information: Published ArticleFirst version cannot be displayed due to copyright restrictions.
Faculty / Department / School: No Faculty
Date Deposited: 17 May 2017 04:31
Last Modified: 19 Dec 2017 00:27
Uncontrolled Keywords: injury prevention
Fields of Research : 11 Medical and Health Sciences > 1106 Human Movement and Sports Science > 110604 Sports Medicine
Socio-Economic Objective: C Society > 92 Health > 9299 Other Health > 929999 Health not elsewhere classified
Identification Number or DOI: 10.1136/bjsports-2016-097152
URI: http://eprints.usq.edu.au/id/eprint/32246

Actions (login required)

View Item Archive Repository Staff Only