A comparison of spectroscopic versus imaging techniques for detecting close companions to Kepler objects of interest

Teske, Johanna K. and Everett, Mark E. and Hirsch, Lea and Furlan, Elise and Horch, Elliott P. and Howell, Steve B. and Ciardi, David R. and Gonzales, Erica and Crepp, Justin R. (2015) A comparison of spectroscopic versus imaging techniques for detecting close companions to Kepler objects of interest. The Astronomical Journal, 150 (5). pp. 144-164. ISSN 0004-6256

Text (Published Version)

Download (31MB) | Preview


Kepler planet candidates require both spectroscopic and imaging follow-up observations to rule out false positives and detect blended stars. Traditionally, spectroscopy and high-resolution imaging have probed different host star companion parameter spaces, the former detecting tight binaries and the latter detecting wider bound companions as well as chance background stars. In this paper, we examine a sample of 11 Kepler host stars with companions detected by two techniques - near-infrared adaptive optics and/or optical speckle interferometry imaging, and a new spectroscopic deblending method. We compare the companion effective temperatures (Teff) and flux ratios (FB/FA, where A is the primary and B is the companion) derived from each technique and find no cases where both companion parameters agree within 1σ errors. In 3/11 cases the companion Teff values agree within 1σ errors, and in 2/11 cases the companion FB/FA values agree within 1σ errors. Examining each Kepler system individually considering multiple avenues (isochrone mapping, contrast curves, probability of being bound), we suggest two cases for which the techniques most likely agree in their companion detections (detect the same companion star). Overall, our results support the advantage that the spectroscopic deblending technique has for finding very close-in companions (θ ≲ 0.″02-0.″05) that are not easily detectable with imaging. However, we also specifically show how high-contrast AO and speckle imaging observations detect companions at larger separations (θ ≥ 0.″02-0.″05) that are missed by the spectroscopic technique, provide additional information for characterizing the companion and its potential contamination (e.g., position angle, separation, magnitude differences), and cover a wider range of primary star effective temperatures. The investigation presented here illustrates the utility of combining the two techniques to reveal higher-order multiples in known planet-hosting systems.

Statistics for USQ ePrint 32099
Statistics for this ePrint Item
Item Type: Article (Commonwealth Reporting Category C)
Refereed: Yes
Item Status: Live Archive
Additional Information: Access to published version in accordance with the copyright policy of the publisher.
Faculty/School / Institute/Centre: No Faculty
Faculty/School / Institute/Centre: No Faculty
Date Deposited: 31 May 2017 07:13
Last Modified: 30 Oct 2017 01:25
Uncontrolled Keywords: binaries: general; planetary systems; techniques: high angular resolution techniques: interferometric techniques: photometric techniques; spectroscopic
Fields of Research (2008): 02 Physical Sciences > 0201 Astronomical and Space Sciences > 020110 Stellar Astronomy and Planetary Systems
02 Physical Sciences > 0201 Astronomical and Space Sciences > 020102 Astronomical and Space Instrumentation
Fields of Research (2020): 51 PHYSICAL SCIENCES > 5101 Astronomical sciences > 510109 Stellar astronomy and planetary systems
51 PHYSICAL SCIENCES > 5199 Other physical sciences > 519999 Other physical sciences not elsewhere classified
Socio-Economic Objectives (2008): E Expanding Knowledge > 97 Expanding Knowledge > 970102 Expanding Knowledge in the Physical Sciences
Identification Number or DOI: https://doi.org/10.1088/0004-6256/150/5/144
URI: http://eprints.usq.edu.au/id/eprint/32099

Actions (login required)

View Item Archive Repository Staff Only