Scalable low-cost SnS2 nanosheets as counter electrode building blocks for dye-sensitized solar cells

Bai, Yang and Zong, Xu and Yu, Hua and Chen, Zhi-Gang ORCID: and Wang, Lianzhou (2014) Scalable low-cost SnS2 nanosheets as counter electrode building blocks for dye-sensitized solar cells. Chemistry: A European Journal, 20 (28). pp. 8670-8676. ISSN 0947-6539


A new type of semitransparent SnS2 nanosheet (NS) films were synthesized using a simple and environmentally friendly solution-processed approach, which were subsequently used as a counter electrode (CE) alternative to the noble metal Pt for triiodide reduction in dye-sensitized solar cells (DSSCs). The resultant SnS2-based CE with a thickness of about 300 nm exhibited excellent electrochemical catalytic activity for catalyzing the reduction of triiodide and demonstrated comparable power conversion efficiency of 7.64 % with that of expensive Pt-based CE in DSSCs (7.71 %). When functionalized with a small amount of carbon nanoparticles, the SnS2 NS-based CE showed even better performance of 8.06 % than Pt under the same conditions. Considering the facile fabrication method, optical transparency, low cost, and remarkable catalytic property, this study on SnS2 NSs may shed light on the large-scale production of electrocatalytic electrode materials for low-cost photovoltaic devices.

Statistics for USQ ePrint 31696
Statistics for this ePrint Item
Item Type: Article (Commonwealth Reporting Category C)
Refereed: Yes
Item Status: Live Archive
Additional Information: Published version cannot be displayed due to copyright restrictions.
Faculty/School / Institute/Centre: No Faculty
Faculty/School / Institute/Centre: No Faculty
Date Deposited: 21 Jun 2017 03:35
Last Modified: 21 Jun 2017 03:35
Uncontrolled Keywords: dye-sensitized solar cells; efficient counter electrode; nanostructures; photochemistry; carbon nano-particles; counter electrodes; dye-sensitized solar cell; dye-sensitized solar cells; electrocatalytic electrodes; electrochemical catalytic activities; large-scale production; power conversion efficiencies; precious metals; solar power; electric components; Optical devices and systems; nanotechnology; chemical reactions; solid state physics
Fields of Research (2008): 03 Chemical Sciences > 0303 Macromolecular and Materials Chemistry > 030302 Nanochemistry and Supramolecular Chemistry
Fields of Research (2020): 34 CHEMICAL SCIENCES > 3403 Macromolecular and materials chemistry > 340399 Macromolecular and materials chemistry not elsewhere classified
Socio-Economic Objectives (2008): E Expanding Knowledge > 97 Expanding Knowledge > 970103 Expanding Knowledge in the Chemical Sciences
Identification Number or DOI:

Actions (login required)

View Item Archive Repository Staff Only