Impacts of Cu deficiency on the thermoelectric properties of Cu2-XSe nanoplates

Yang, Lei and Chen, Zhi-Gang ORCID: and Han, Guang and Hong, Min and Zou, Jin (2016) Impacts of Cu deficiency on the thermoelectric properties of Cu2-XSe nanoplates. Acta Materialia, 113. pp. 140-146. ISSN 1359-6454


Non-stoichiometric Cu2-xSe is one of important thermoelectric candidates for intermediate temperature applications with intrinsically high performance at 800-1000 K. In this study, Cu-deficient Cu2-xSe nanoplates were synthesized by a facile and controllable solvothermal method and the impact of Cu deficiency on their corresponding thermoelectric performance was systematically investigated. It has been found that α-phased Cu2-xSe can be induced by a relatively high level of Cu deficiency (Cu1.95Se) in the as-synthesized Cu2-xSe nanoplates at room temperature. The Cu deficiency was also found to reduce the thermoelectric performances, but had no significant impact to the morphology of as-synthesized products. Overall, with the existence of full-spectrum phonon scattering mechanism benefited from the nanostructuring, the stoichiometric Cu2Se nanoplates showed an outstanding ZT of 1.82 at ∼850 K due to its significantly reduced thermal conductivity. With increasing the Cu deficiency, although the Cu2-xSe nanoplates showed a reduced ZT, such as 1.4 at 850 K for Cu1.98Se, it is still much higher than its bulk counterparts under the same temperature.

Statistics for USQ ePrint 31665
Statistics for this ePrint Item
Item Type: Article (Commonwealth Reporting Category C)
Refereed: Yes
Item Status: Live Archive
Additional Information: Permanent restricted access to Published version in accordance with the copyright policy of the publisher.
Faculty/School / Institute/Centre: No Faculty
Faculty/School / Institute/Centre: No Faculty
Date Deposited: 13 Jun 2017 02:49
Last Modified: 27 Jun 2017 06:29
Uncontrolled Keywords: copper selenide; Cu deficiency; nanostructures; thermoelectric materials
Fields of Research (2008): 09 Engineering > 0912 Materials Engineering > 091205 Functional Materials
Fields of Research (2020): 40 ENGINEERING > 4016 Materials engineering > 401605 Functional materials
Identification Number or DOI:

Actions (login required)

View Item Archive Repository Staff Only