Song, Ping'An ORCID: https://orcid.org/0000-0003-1082-652X and Liu, Lina and Huang, Guobo and Yu, Youming and Guo, Qipeng
(2013)
Largely enhanced thermal and mechanical properties of polymer nanocomposites via incorporating C60@graphene nanocarbon hybrid.
Nanotechnology, 24 (50).
pp. 1-8.
ISSN 0957-4484
Abstract
Although considerable progress has been achieved to create advanced polymer nanocomposites using nanocarbons including fullerene (C60) and graphene, it remains a major challenge to effectively disperse them in a polymer matrix and to fully exert their extraordinary properties. Here we report a novel approach to fabricate the C60@graphene nanocarbon hybrid (C60: ∼47.9 wt%, graphene: ∼35.1%) via three-step reactions. The presence of C60 on a graphene sheet surface can effectively prevent the aggregation of the latter which in turn helps the dispersion of the former in a polymer matrix during melt-processing. C60@graphene is found to be uniformly dispersed in a polypropylene (PP) matrix. Compared with pristine C60 or graphene, C60@graphene further improves the thermal stability and mechanical properties of PP. The incorporation of 2.0 wt% C60@graphene (relative to PP) can remarkably increase the initial degradation temperature by around 59 ° C and simultaneously enhance the tensile strength and Young's modulus by 67% and 76%, respectively, all of which are higher than those of corresponding PP/C60 (graphene) nanocomposites. These significant performance improvements are mainly due to the free-radical-trapping effect of C60, and the thermal barrier and reinforcing effects of graphene nanosheets as well as the effective stress load transfer. This work provides a new methodology to design multifunctional nanohybrids for creating advanced materials.
![]() |
Statistics for this ePrint Item |
Item Type: | Article (Commonwealth Reporting Category C) |
---|---|
Refereed: | Yes |
Item Status: | Live Archive |
Additional Information: | Files associated with this item cannot be displayed due to copyright restrictions. |
Faculty/School / Institute/Centre: | No Faculty |
Faculty/School / Institute/Centre: | No Faculty |
Date Deposited: | 29 May 2017 06:07 |
Last Modified: | 24 Nov 2021 00:33 |
Uncontrolled Keywords: | advanced materials; advanced polymers; degradation temperatures; effective stress; graphene nanosheets; graphene sheets; reinforcing effects; thermal and mechanical properties |
Fields of Research (2008): | 10 Technology > 1007 Nanotechnology > 100708 Nanomaterials |
Fields of Research (2020): | 40 ENGINEERING > 4018 Nanotechnology > 401807 Nanomaterials |
Socio-Economic Objectives (2008): | E Expanding Knowledge > 97 Expanding Knowledge > 970110 Expanding Knowledge in Technology |
Identification Number or DOI: | https://doi.org/10.1088/0957-4484/24/50/505706 |
URI: | http://eprints.usq.edu.au/id/eprint/31647 |
Actions (login required)
![]() |
Archive Repository Staff Only |