Rural Research and Development for Profit Programme

Smarter Irrigation for Profit

Dr James Hills, David McLaren
Tasmanian Institute of Agriculture (TIA)
- University of Tasmania

Dr Joseph Foley, Dr Alison McCarthy
National Centre for Engineering in Agriculture (NCEA) – University of Southern Queensland
Project overview

• Partnership between irrigation industries of Cotton, Dairy, Rice and Sugar

• Ten key activities across 4 industries with 16 R&D partners and 19 farmer managed learning sites across 5 states

• Three key components
 – Irrigation scheduling technologies
 – Smart automated irrigation
 – A network of farmer managed learning sites (Optimised irrigation farms)
Project 2b – Smart Automated irrigation

• Increasing farm profit through efficient use of irrigation input to dairy pastures

 – Five Farmer sites
 • 4 with human interface
 • 1 with Automation (VARIwise)
Key learnings for 2015/16

• Measures of variability
• Energy Use
• Pasture Productivity
• Automation
Variability - Montana site
Variability maps

EM 38

Landscape Change
Landscape Change
Energy use in pumping

- **Benchmarks**
 - 4-8 kWh/ML/meter head
 - 150-300 kWh/ML
 - $30-70/ML Daley and Callow 2014

<table>
<thead>
<tr>
<th>Pivot Site</th>
<th>Flow m3/hr</th>
<th>Pump Size</th>
<th>Motor size (kW)</th>
<th>kWhr/ML $/kWhr</th>
<th>$/ML</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>232</td>
<td>150x125-315</td>
<td>30</td>
<td>113</td>
<td>0.23</td>
</tr>
<tr>
<td>2</td>
<td>225</td>
<td>150x125-315</td>
<td>37</td>
<td>157</td>
<td>0.23</td>
</tr>
<tr>
<td>3</td>
<td>316</td>
<td>150x125-250</td>
<td>75</td>
<td>220</td>
<td>0.23</td>
</tr>
<tr>
<td>4</td>
<td>163</td>
<td>100x75-315</td>
<td>45</td>
<td>304</td>
<td>0.23</td>
</tr>
<tr>
<td>5</td>
<td>92</td>
<td>100x65-315</td>
<td>75</td>
<td>787</td>
<td>0.23</td>
</tr>
</tbody>
</table>
Energy savings

Site 5

- Pump and motor replaced
- 787 kWh/ML vs 206 kWh/ML
- Savings of $133/ML or $25000 for the season
Irrigation scheduling and Pasture productivity

Cressy – 6 ML/ha

Montana – 4 ML/ha
Pasture growth rates

- Cressy averaged 30-40kg DM/ha/d
- Opportunity loss of 20kg DM/ha/d
- Opportunity loss of 210t pasture on 117ha pivot replaced with purchased grain
- $200/t extra cost
- $42000 extra cost over three months
Cressy Pivot Water Balance
Automation
Cameras on TIA Dairy Research Farm

- Pasture height used for irrigation
- Height is measured using quad bike sensor
- Smartphone-based cameras on pivot upload image and location

TIA Dairy Research Facility

Locations of cameras on pivot

Sample image
Automated irrigation for dairy pastures

- Image analysis extracts average leaf length in camera image
- Compared with weekly quadbike height data

Height from quadbike sensor | Canopy cover from cameras

Graph:

- **Equation:** $y = 2.4226x - 150.46$
- **R^2:** 0.8127
Acknowledgements

David McLaren, TIA
Joe Foley, NCEA
Alison McCarthy, NCEA

Five Farmers