Quantifying drivers of crop-livestock integration
National Farm Business Risk Forum, Perth

Afshin Ghahramani, Dean Thomas, Andrew Moore
27 August 2015

This presentation
• Introduction to climate adaptation project in WA mixed-farms
• Modelling mixed farms and outputs for risk assessment
• Livestock-cropping interactions in 2030
• Risk assessment for current climate
• Discussion & feedback

Mixed farm modelling
• AusFarm is...
 - Coupling APSIM and GRAZPLAN
 • Can be configured for mixed farming systems
 - Management: via rule-based scripts

Framing a risk assessment
Biophysical model to:
• Biophysical processes have to be linked with decision-making processes to enable simulation of changes, the impacts of management decisions on the biophysical system but also the feedbacks,
• Feed to economic calculation e.g., distribution function to evaluate risk and return

Risk measures:
• Value at risk
 Conditional value-at-risk as a measure of downside risk; as used here, CVaR is the average of the gross margins in the worst 20% of financial years.

Return measures:
• Expected return

Historical climate
Increase in frost days

Transformational adaptation project
• Examine adaptation options that provide resilience to likely climate change for a range of land managers with mixed grazing/cropping enterprises.
• Consider the effectiveness of adaptations at multiple scales (farm, community and region) and against multiple criteria (profit, risk, environmental impacts, GHG emissions and community impacts).
• Consideration of more systemic and transformative adaptation options derived from effective packaging of multiple incremental changes.
Some characteristics of the work

- 29 team members across states
- Broad spatial coverage
- Building complex (current) systems
- Diverse soils, crops, pasture, livestock, rotation systems
- Stakeholder engagement
- Modelling changes in management practice and modelling farmer choice
- Model input & Verification through workshops (and observations)
- Designing work flows for large simulations
- On-job training (DPI, DEPI, SARDI, BCG)
- Maintaining model consistency across transects

Transformational adaptation project

Representative mixed farms
- Katanning
- Cunderdin
- Merredin
- Mullewa
- Salmon Gums

Model outputs

Example: Metrics in 2030 compared to a baseline (1980-1999)

- Wool
- Wheat
- Canola
- Barley
- Profit
- NRM
- WUE
- Climate

A large set of outputs for productivity, profitability, risk assessment, NRM, GHG emission, adaptation-mitigation tradeoffs, water & nitrogen stress

Interactions between financial outputs of livestock & cropping

Less sensitivity of pasture and livestock to changes in climate in 2030

Levels of integration

1. a cropping-only system ("C") - wheat, canola and barley;
 - 100%
2. a livestock-only system ("L")
 - 100%
3. a segregated mixed farming system ("S") in which the "C" and "L" management systems (54% and 46% of farm area) were allocated to the soil types better suited to each activity;
 - 54%
- 46%
4. mixed farm with rotations of 3-5 year phases of legume-based pastures and grain crops on the better soil types ("R")
5. a “strategically synchronised” mixed farm ("SS") in which the "R" management system was further integrated
6. a “tactically synchronised” mixed farm ("ST")
Financial risk assessment (up to Gross margin) of different level of livestock-cropping integrations

Conditional value-at-risk: the average of the gross margins in the worst 20% of financial years.

Systemic to transformative adaptation

- Elicited adaptation options are very locally-specific
- Alteration of the crop-livestock balance,
- Low-variability to high-intensity mixed farming,
 1. low risk and low return approach
 2. Medium risk and medium return approach
 3. High risk and high return approach.
- Segregation + perennial pastures,
- Seasonally responsive farming.

Risk assessment of above packages

Thank you very much

Agriculture Flagship
Afshin Ghahramani
Postdoctoral research fellow
+61 2 6246 4892
e af.ghahramani@csiro.au