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This paper presents a performance based evolutionary topology
optimization method for automatically generating optimal strut-
and-tie models in reinforced concrete structures with displace-
ment constraints. In the proposed approach, the element virtual
strain energy is calculated for element removal, while a perfor-
mance index is used to monitor the evolutionary optimization
process. By systematically removing elements that have the
least contribution to the stiffness from the discretized concrete
member, the load transfer mechanism in the member is gradu-
ally characterized by the remaining elements. The optimal
topology of the strut-and-tie model is determined from the per-
formance index history, based on the optimization criterion of
minimizing the weight of the structure while the constrained
displacements are within acceptable limits. Several examples
are provided to demonstrate the capability of the proposed
method in finding the actual load transfer mechanism in concrete
members. It is shown that the proposed optimization procedure
can produce optimal strut-and-tie models that are supported by
the existing analytical solutions and experimental evidence, and
can be used in practice, especially in the design of complex rein-
forced concrete members where no previous experience is avail-
able. 
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INTRODUCTION
The strut-and-tie model is considered the basic tool in the de-

sign and detailing of reinforced concrete members loaded in
bending, shear, and torsion. The structural idealization of a re-
inforced concrete member is to develop an analogous truss
model consisting of compressive struts and tensile ties that rep-
resent the actual load transfer mechanism in the concrete mem-
ber for the applied loads and given support environments. The
strut-and-tie model developed is then employed to investigate
the equilibrium between the loads, the reactions, and the inter-
nal forces in the concrete struts and in the reinforcements
(Marti1). The actual load carried by the strut-and-tie model is
treated as a lower-bound ultimate load for the reinforced con-
crete member based on the lower-bound theorem of plasticity.
This simple approach provides a clear understanding of the be-
havior of reinforced concrete members.2  Moreover, it offers a
unified, intelligible, rational, and safe design framework for
structural concrete under combined load effects.3

The truss models with 45-degree inclined compressive diag-
onals were originally developed by Ritter4 for the analysis and
design of reinforced concrete beams under shear in 1899. Later,
Mörsch5 extended the truss models to the design of reinforced
concrete members under torsion. Recently, the consistent de-
sign approach proposed by Schlaich et al.2,6 allows any part of
a concrete structure to be designed using the strut-and-tie mod-
eling. The truss model approach is also recommended by the

ASCE-ACI Committee 445 on Shear and Torsion3 for the shear
design of structural concrete. Based on this approach, develop-
ing an appropriate strut-and-tie model in the structural concrete
member is an important task for the structural designer. The
elastic stress distribution and load path methods have been used
to develop strut-and-tie models in structural concrete.1,2 In the
elastic stress distribution approach, the strut-and-tie model is
formed by orientating the struts and ties to the principle stress
flows, which are obtained by performing a linear elastic finite
element analysis on the uncracked homogenization concrete
member. It is difficult, however, to find the correct models in
concrete members with complex loading and geometry condi-
tions using these conventional methods that usually involve a
trial-and-adjustment process. 

The layout optimization theory has been well-developed in
the past few decades (Rozvany et al.;7  Topping8). Kumar9 and
Biondini et al.10 used the truss topology optimization tech-
niques to find optimal strut-and-tie models in structural concrete
members based on the ground structure approach. The continu-
um concrete member is represented by a ground structure that
consists of many truss members, and the linear programming
technique is employed to solve the truss topology optimization
problem. This method offers an automatic search for strut-and-
tie models in reinforced concrete members in an iterative pro-
cess. Since the ground structure grid has a significant effect on the
optimal topology of the structure,11 however, the chosen ground
structure may not adequately simulate the nature of a continuum
concrete member. 

The topology optimization of continuum structures has re-
ceived considerable attention in recent years. The homogeniza-
tion method (Bendsøe and Kikuchi12) has been proposed by
treating topology optimization as a material redistribution prob-
lem within a fixed continuum design domain. The solid isotro-
pic microstructure with penalty (SIMP) method (Zhou and
Rozvany;13 Rozvany et al.14) for intermediate densities can be
used to generate solid-empty type topologies for continuum
structures. The evolutionary structural optimization (ESO)
method (Xie and Steven;15-17 Chu et al.18) is developed based
on material removal criteria. The performance indexes devel-
oped by Liang et al.19-21 are used to monitor the optimization
process, and to measure the performance of structural topolo-
gies and shapes generated by different structural optimization
methods. The optimal topology of a plane stress continuum
structure produced by the continuum topology optimization is
often a truss-like structure. Therefore, it is appropriate to apply
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this technique in finding the best strut-and-tie models in rein-
forced concrete structures.

In this paper, a performance based evolutionary topology
optimization method based on the stiffness formulation is pro-
posed and applied to automatically developing optimal strut-
and-tie models in reinforced concrete structures. The key fea-
tures of the present topology optimization method are outlined.
Examples are provided to show the effectiveness and validity of
the proposed design optimization procedure in automatically
tracing the actual load transfer mechanism in concrete deep
beams, with and without web openings, slender beams, and a
corbel. The optimal strut-and-tie models obtained by the present
study are qualitatively compared with existing analytical solu-
tions and experimental observations. The results and various re-
lated aspects are discussed.

RESEARCH SIGNIFICANCE
Although the potential of modern structural optimization

techniques has been realized by aeronautical, automotive, and
mechanical industries, they are still viewed by civil engineers as
academic exercises.22 It should be esteemed, however, that
structural optimization can be much more than weight savings.
Structural optimization techniques can be used to find better to-
pologies and shapes for the design of civil engineering struc-
tures. The present research exposes the capability of an
evolutionary topology optimization method for producing opti-
mal strut-and-tie models in concrete members to civil engineers. 

Extensive work has been undertaken on shear in structural con-
crete, but the shear behavior of a reinforced concrete member is still
difficult to understand due to its complicated nature. The load trans-
fer mechanism of a reinforced concrete member is not the function
of a single variable, and it depends on the geometry, loading, and
support conditions of the member. It is time consuming and diffi-
cult for the structural designer to find appropriate strut-and-tie
models in complex members by using conventional methods.
Therefore, the proposed automatic design optimization procedure
is not only helpful for concrete researchers to understand the shear
resistance mechanism, but also a valuable design tool for concrete
designers in the design and detailing of reinforced concrete mem-
bers using the strut-and-tie modeling.

PERFORMANCE BASED EVOLUTIONARY 
OPTIMIZATION 

Problem formulation
The topology optimization of a continuum structure is to find

the optimal geometry that minimizes the weight of the structure
under the applied loads while satisfying the requirement of con-
straints imposed on the structure. The optimization problem can
be stated as follows

(1)

(2)

where W  is the total weight of the structure; we is the weight of
the e th element; te is the thickness of the e th element that is
treated as the design variables; uj is the absolute value of the jth
constrained displacement; uj

* is the prescribed limit of uj ; m is
the total number of displacement constraints; and n is the total
number of elements within the structure. 

It is known that some part of materials in the initial design do-
main is inefficient in carrying loads. The optimization task is to
identify the inefficient materials and to remove them from the
structure so that the objective of minimizing the weight can be
achieved while the constrained displacements are within the
prescribed limits. By means of systematically removing ele-
ments from the discretized concrete member, the actual load
paths within the concrete member can be gradually character-
ized by the remaining elements. In detail design, the concrete
usually remains in the structural member. Hence, the strut-and-
tie idealization of a reinforced concrete member offers a conser-
vative design.

Element removal criteria
For structures subject to displacement constraints, it is desir-

able to eliminate elements that have a minimum effect on the
changes in the constrained displacements from the design. The
effect of element removal on the constrained displacements can
be evaluated by the element sensitivity numbers, which are cal-
culated from the results of the finite element analysis. In the fi-
nite element analysis, the equilibrium equation for a static
structure is expressed by

(3)

in which [K] is the stiffness matrix of the structure; {u} is the
nodal displacement vector; and {P} is the nodal load vector.
When the eth element is removed from a structure, the stiffness
and displacements are changed, and Eq. (3) can be rewritten as 

(4)

where [∆K ] is the change of stiffness matrix, and {∆u} is the
change of displacement vector. The change of the stiffness ma-
trix due to the removal of the eth element is 

(5)

in which [Kr] is the stiffness matrix of the resulting structure,
and [ke] is the stiffness matrix of the e th element. The change of
displacement vector can be obtained by subtracting Eq. (3) from
Eq. (4) and neglecting the higher-order term as

(6)

To measure the change of the constrained displacement uj due
to an element removal, a virtual unit load is applied to the posi-
tion of the j th constrained displacement. By multiplying Eq. (6)
with the virtual unit load vector {Fj}

T, the change of the con-
strained displacement is 

(7)

minimize W we te( )
e 1=

n

∑=

subject to  uj uj
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where {u j} and {uej} are the nodal displacement vectors of the
structure and the eth element under the virtual unit load, respec-
tively; and {ue} is the displacement vector of the eth element un-
der the real loads. Equation (7) indicates the change in the
constrained displacement due to the removal of the eth element,
and can be used as a measure of the element efficiency. Therefore,
the virtual strain energy for the eth element in the design subject
to a displacement constraint is denoted by

(8)

For a structure under multiple displacement constraints, the
weighted average approach is used to calculate the virtual strain
energy for element removal. The virtual strain energy for the eth
element for multiple displacement constraints is determined by

(9)

where the weighting parameter λj is defined as uj/u j
* . If the con-

strained displacement is far from the prescribed limit, it will be
less critical in the optimization process.

The elements with the lowest sensitivity numbers have little
effect on the changes in the constrained displacements, and can
be removed from the structure to obtain an efficient design. For
a structure under multiple load cases, only elements having the
lowest sensitivity numbers for all load cases are eliminated from
the design. This ensures that remaining materials in the structure
can safely carry all the loads. It is noted that minimizing the
changes in constrained displacements is equivalent to maximiz-
ing the stiffness of the structure. Since concrete permits only
limited plastic deformation, the best strut-and-tie model within
the concrete member is the one with the maximum stiffness or
minimum deflections, while its weight is the minimum.2,9,23

Therefore, the optimization method based on displacement for-
mulation is appropriate for finding optimal strut-and-tie models. 

Performance index
In topology optimization, the cycle of finite element analysis

and element removal is repeated, and the quality of the resulting
structure is gradually improved. The performance of the resulting
topology at each iteration is evaluated by the performance index
that can be derived by the scaling design approach.20 

For a linear elastic plane stress continuum structure, the stiff-
ness matrix is a linear function of the design variable such as the
element thickness, which has a significant effect on constrained
displacements and the weight of the final optimal design. To ob-
tain the best feasible topology of a structure with the minimum
weight, the thickness of elements can be scaled at each iteration
in the optimization process so that the critical constrained dis-
placement always reaches the prescribed limit.24,25 By scaling
the initial design domain with a factor of u0j/uj

*, the scaled weight
of the initial design domain can be expressed by

(10)

where W0 is the actual weight of the initial design domain, and
u0j is the absolute value of the j th constrained displacement that
is the most critical in the initial design under real loads. Similar-
ly, by scaling the current design with respect to the most critical

u j{ }T ∆K[ ] u{ }– ue j{ }T
ke[ ] ue{ }= =

α e ue j{ }T
ke[ ] ue{ }=

αe λ j ue j{ }T
ke[ ] ue{ }
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m
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W0
s

u0j

u j
∗

------- 
 W0=

displacement limit, the scaled weight of the current design at the
ith iteration is represented by

(11)

where uij is the absolute value of the jth constrained displace-
ment that is the most critical in the current design at the ith iter-
ation under real loads, and Wi is the actual weight of the current
design at the ith iteration.

The efficiency of material layout in a structure at the ith it-
eration can be measured by the performance index, which is
defined as

(12)

It is seen from Eq. (12) that the performance index is a dimen-
sionless number that measures the efficiency of material layout
in resisting the deflection and failure of a structure. The perfor-
mance of a structural topology is improved by removing mate-
rials having the least contribution to the stiffness from the
structure. The objective of minimizing the weight of a structure
with displacement constraints can be achieved by maximizing
the performance index in an optimization process. The peak val-
ue of the performance index indicates that the best structure is
the one with the minimum weight and deflection, as pointed out
by Hemp.23 The displacement limit uj

* is eliminated from Eq.
(12). This means that the optimal topology does not depend on
the magnitude of the displacement limits. Therefore, displace-
ment limits are set to large values in the optimization process in
the present study to obtain the optimal topology, which can then
be sized by changing the width of the member with respect to
the actual displacement limits.

It is worth noting that changing the element thickness has no
effect on the topology of the structure or on the performance in-
dex, but it has a significant influence on the weight of the struc-
ture and the constrained displacements. As a result of this, it is
not necessary to change the thickness of elements in the model
in the finite element analysis at each iteration. The performance
index can be employed to evaluate the efficiency of the resulting
topology at each iteration and to identify the optimum, which
can then be sized by changing the thickness of the structure to
satisfy the actual displacement limit. 

Evolutionary optimization procedure
The design of a reinforced concrete member by using strut-

and-tie models usually involves the estimation of an initial size,
finding an appropriate strut-and-tie model, and dimensioning
struts, ties, and nodes. Developing an appropriate strut-and-tie
model for a complex concrete member is perhaps the most dif-
ficult task in the design process. Afterwards, dimensioning the
truss model is straightforward according to codes of practice,26

and is not the objective of this paper. Interested readers should
refer to References 1 and 2 for details. The present topology op-
timization method can be used for developing the best strut-and-
tie models in concrete members in the design process. The opti-
mization procedure is given as follows:

Step 1: Model the concrete member with fine finite elements;
Step 2: Analyze the concrete member for real loads and virtu-

al unit loads; 
Step 3: Calculate the performance index using Eq. (12);
Step 4: Calculate the virtual strain energy for each element

using Eq. (8) or (9);
Step 5: Delete a small number of elements with the lowest vir-

tual strain energy; and

W i
s

u i j

u j
∗
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Step 6: Repeat Steps 2 to 5 until the performance index is less
than unity.

The performance index is used as an indicator of material ef-
ficiency and as the termination criterion in the previously men-
tioned iterative optimization process. Because the virtual strain
energy is calculated by neglecting the higher-order term in the
sensitivity analysis, only a small number of elements is removed
from the structure at each iteration to obtain a sound solution.
The element removal ratio (ERR) is defined as the ratio of the
number of elements to be removed to the total number of ele-
ments in the initial design domain and kept constant in the opti-
mization process. It is obvious that the accuracy of the solution is
improved by adopting a smaller element removal ratio, but the
computational cost will be considerably increased. It has been
found that the ERR of 1 or 2% provides reasonable results for
use in engineering practice.

After extensive cracking of concrete, the loads applied to a re-
inforced concrete member are mainly carried by compressive
concrete struts and tensile steel reinforcements. The failure of a
reinforced concrete member cannot simply be explained by the
tensile stresses attaining the tensile strength of concrete; rather,
it is due to the breakdown of the load transfer mechanism at the
crack.3 In current engineering practice, the behavior of rein-
forced concrete members is usually approximated by un-
cracked, cracked linear and limit analyses.27 Strut-and-tie
models are primarily used to predict the behavior of fully
cracked structural concrete members under the ultimate load
condition. Because the locations of tensile ties and the amounts
of steel reinforcement are not known in advance, the concrete
member is modeled using plane stress elements in the present
study. The linear elastic behavior of cracked concrete is as-
sumed in the analysis as suggested by Schlaich et al.2 Because
tensile ties in the strut-and-tie model obtained will be replaced
with steel reinforcements in a reinforced concrete member, the
effect of cracking due to stresses attaining the tensile strength of
concrete is not considered. The progressive cracking of a con-
crete member, however, is characterized by gradually removing
concrete from the member that is fully cracked at the optimum.
In nature, the loads are transmitted so that the associated strain
energy is a minimum. The topology optimization in this paper is
to find a strut-and-tie model as stiff as possible. The strength of
concrete struts, ties, and nodes can be treated when dimension-
ing the model. 

EXAMPLE 1
The proposed procedure is used to find the best strut-and-tie

model in a simply supported concrete deep beam under two con-
centrated loads of P1 = 1200 kN placed at the bottom of the
beam, as shown in Fig. 1. The compressive cylinder strength of
concrete fc′ = 32 MPa; Young’s modulus of concrete E = 28,567
MPa; Poisson’s ratio ν = 0.15; and the initial width of the beam
b0 = 250 mm are assumed in the study. The width of the beam
can be adjusted when dimensioning the strut-and-tie model ob-
tained. The concrete beam is modeled using 50 mm square four-

node plane stress elements. Two displacement constraints of the
same limit are imposed on the two loaded points in the vertical
direction. The ERR = 1% is adopted in the optimization process.

The performance index history of the deep beam loaded at the
bottom is presented in Fig. 2. While elements are systematically
removed from the deep beam, the performance index is gradually
increased from unity to the maximum value of 1.32, which corre-
sponds to the optimal topology of the strut-and-tie model within
the concrete member. The topologies obtained at different itera-
tions for this deep beam are given in Fig. 3. It can be observed
from Fig. 3 that when elements having the least contribution to the
structural stiffness are removed from the member, the actual load
transfer mechanism in the concrete member becomes clear, as
characterized by the remaining elements. 

The optimal topology shown in Fig. 3(c) indicates the best
layout of the strut-and-tie model, in which the compressive arch
is formed, and the rest of the members are in tension. The strut-
and-tensile ties can be accurately located according to this opti-
mal topology. The optimal topology shown in Fig. 3(c) is ideal-
ized as the strut-and-tie model shown in Fig. 3(d), which can be
used to determine the internal forces of the truss and reinforce-
ment arrangements in the detail design. The vertical and in-
clined reinforcements should be provided to transfer the loads to
the compressive concrete arch. The dimension of the strut, ties,
and nodes should be undertaken according to codes of practice,
and is not discussed herein.

EXAMPLE 2
A simply supported deep beam with two web openings based

on the test specimen (O-O.3/3) presented by Kong and Sharp28 is
illustrated in Fig. 4. Two concentrated loads of P1 = 140 kN are
applied to the top of the deep beam. The compressive cylinder
strength of concrete fc ′ = 35.5 MPa; Young’s modulus of concrete
E = 30088 MPa; Poisson’s ratio ν = 0.15; and the width of the
beam b = 100 are used in the analysis. The concrete beam is dis-
cretized into 25 mm square four-node plane stress elements. The
displacement constraints of the same limit are imposed on the two
loaded points in the vertical direction to obtain the optimal strut-
and-tie model with minimum deflections. The ERR = 1% is
adopted in the optimization process.

Figure 5 shows the performance index history of the deep
beam with web openings obtained by using the present proce-
dure. The maximum performance index is 1.58, which indicates
that the resulting design represents the optimal topology of the
strut-and-tie model within the deep beam. The evolutionary to-
pology optimization history is shown in Fig. 6(a) to (c), from
which it can be observed that the load transfer mechanism with-
in the concrete deep beam are gradually manifested by the re-
maining elements. Ideally, the loads are transmitted along the

Fig. 1—Deep beam loaded at bottom.

Fig. 2—Performance index history of deep beam loaded at bot-
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shortest natural load paths between the loading and reaction

points. If the opening intercepts the natural load path, the load is
to be rerouted around the opening.9  This is confirmed by the op-
timal strut-and-tie model shown in Fig. 6(d), which indicates

that the loads are transmitted to the supports by the upper and
lower struts around the opening. The presence of two inclined

tensile ties that connect the upper and lower struts around the

opening in Fig. 6(d) is supported by the experimental observa-
tions conducted by Kong and Sharp.28

EXAMPLE 3
The best strut-and-tie model is needed to be found for a sim-

ply supported deep beam under the factored load P = 3000 kN
with a large hole, as shown in Fig. 7. This concrete deep beam
is based on the example given by Schlaich et al.2 The compres-
sive design strength of concrete fc = 17 MPa; Young’s modulus
of concrete E = 20820 MPa; Poisson’s ratio ν = 0.15; and the
initial width of the beam b0 = 400 mm are used in this study. The
concrete beam is modeled using 100 mm square four-node plane
stress elements. A displacement constraint is imposed on the
loaded point in the vertical direction, and the ERR = 1% is
adopted in the optimization process.

Figure 8 demonstrates the performance index history of the
deep beam with a large hole. After reaching the peak value, the
performance index may drop sharply. This is because further el-
ement removal will cause large deflections. The maximum per-
formance index is obtained as 1.65, which corresponds to the
optimal topology given in Fig. 9(c). The topologies obtained at
different iterations in the optimization process are shown in Fig.
9. It is seen that the load is to be rerouted around the opening,
even if the opening is very close to the support. The inclined ten-
sile tie is developed across the upper right corner of the opening,
which tends to crack under the applied load. The optimal strut-
and-tie model obtained by the present study, as shown in Fig.

Fig. 3—Optimization history of strut-and-tie-model in deep
beam loaded at bottom: (a) topology at iteration 20; (b) topol-
ogy at iteration 40; (c) optimal topology; and (d) optimal strut-
and-tie model (Note: - - - = compressive strut; and —— = ten-

Fig. 4—Deep beam with web openings.

Fig. 5—Performance index of deep beam with web openings.
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9(d), is similar to the strut-and-tie model given by Schlaich et
al.2 

EXAMPLE 4
This example is to investigate the effect of span-depth ratios

on optimal strut-and-tie models in simply supported concrete
beams under a concentrated load at the midspan of the beams, as
shown in Fig. 10. The depth of the beams D is 1000 mm for all
cases, while the span-depth ratio for Cases (a) to (d) is 2, 3, 4,
and 5. The applied point load P = 1200 kN, and the initial width
of the beam b0 = 250 mm are assumed for all cases. It is noted
that the optimal topology of a linear elastic continuum structure
under the plane stress condition does not depend on the scale of
the point load and the width of the member. This can be seen
from Eq. (12). The value of the loading, however, affects the fi-
nal dimensions of struts and ties. The width of the beams can be
changed to satisfy strength and stiffness requirements when di-
mensioning the truss models. The compressive cylinder strength
of concrete fc ′ = 32 MPa; Young’s modulus of concrete E =
28567 MPa; and Poisson’s ratio ν = 0.15 are used for all cases.
The concrete beams are modeled using 50 mm square four-node

plane stress elements, and the element removal ratio ERR = 1%
is employed for all cases.

The maximum performance indexes obtained for Cases (a) to
(d) are 1.88, 1.3, 1.23, and 1.21, respectively. The optimal topol-
ogy and corresponding strut-and-tie idealization for each case
are presented in Fig. 11. It can be observed from Fig. 11 that the
truss model that ideally represents the load transfer mechanism
is changed from deep beams to slender beams. For beams with
a span-depth ratio L/D ≥ 3, inclined tensile ties connecting the
compressive concrete struts are necessary to form the truss mod-
el, as shown in Fig. 11(b) to (d). For very slender concrete
beams, optimal topologies obtained by the continuum topology
optimization method are continuum-like structures, in which
strut-and-tie actions are difficult to be identified, such as that
shown in Fig. 11(d). For such cases, the flexural beam theory
may be applied. These optimal strut-and-tie models indicate that
the angles between compressive concrete struts and longitudinal
ties are equal to or larger than 45 degrees. In detail design, some
of the bottom steel bars may be bent up to resist the inclined ten-
sile stresses or the shear in the shear spans. 

Fig. 6—Optimization history of strut-and-tie model in deep
beam with web openings: (a) topology at iteration 20; (b)
topology at iteration 40; (c) optimal topology; and (d) optimal

Fig. 7—Deep beam with large hole.

Fig. 8—Performance index history of deep beam with large

Fig. 9—Optimization history of strut-and-tie model in deep
beam with large hole: (a) topology at iteration 20; (b) topology
at iteration 40; (c) optimal topology; and (d) optimal strut-and-
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EXAMPLE 5
In this example, the corbel and column are considered as a whole

structure that is designed to support a point load of 500 kN, as il-
lustrated in Fig. 12. The column is fixed at both ends. The com-
pressive cylinder strength of concrete fc ′ = 32 MPa; Young’s
modulus of concrete E = 28567 MPa; Poisson’s ratio ν = 0.15; and
the width of the corbel and column b = 300 mm are assumed. This
structure is modeled using 25 mm square four-node plane stress el-
ements. A displacement constraint is imposed on the loaded point
in the vertical direction, and the element removal ratio ERR = 1%
is used in the optimization process.

Figure 13 shows the performance index history of the struc-
ture. The maximum performance index is 1.34, and the corre-
sponding optimal strut-and-tie topology is shown in Fig. 14(c).
It can be observed from Fig. 14 that the applied load is trans-
ferred to the whole range of the structure along the paths of
compressive struts and tensile ties. This example shows that the
column and corbel should be treated as a whole structure in de-
veloping the best strut-and-tie model. The optimal strut-and-tie
model illustrated in Fig. 14(d) is supported by the solution ob-
tained by the load path method.2

DISCUSSIONS
Various examples given herein have shown that optimal strut-

and-tie models in concrete members can be generated by using
the proposed procedure. Although the present model considers
the elastic behavior of cracked structural concrete, it provides a
clear understanding of the nature of the load transfer mechanism
in reinforced concrete members. Moreover, the results obtained
by the present study confirm the findings of other researchers,
and are supported by experimental evidence. It should be noted
that there are no absolute optimal solutions. The objective of
shape finding is principally used as a vehicle to get a better de-
sign in terms of overall structural performance, and to free con-
crete designers from the time-consuming development of truss
models using conventional methods. 

As mentioned previously, the load transfer mechanism in a re-
inforced concrete member depends on its geometry, loading, and
support condition. Without modification, the strut-and-tie mod-
el developed for a specific reinforced concrete member cannot be

Fig. 10—Simply supported beams with various span-depth

Fig. 11—Optimal topologies and truss models showing transition
from deep beams to slender beams: (a) L/D = 2; (b) L/D = 3; (c)
L/D = 4; and (d) L/D = 5.

Fig. 12—Corbel jointed with column.

Fig. 13—Performance index history of corbel.
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used for different members. The initial size of a reinforced con-
crete member should be estimated based on the serviceability re-
quirement. The proposed stiffness-based method produces the
optimal topology, which indicates only the locations of struts,
ties, and nodes of a strut-and-tie model in a structural concrete
member. Dimensioning the struts, ties, and nodes is left to the
designer. Since the width of a concrete member does not affect
the optimal topology, it can be adjusted to satisfy strength and
stiffness requirements when dimensioning the truss model ob-
tained. It is common for continuum topology optimization
methods that the mesh size has a considerable effect on the re-
sult. The member geometry and computational time need to be
considered in choosing the mesh size. Since an optimal topolo-
gy obtained is still a continuum structure, the strut-and-tie ide-
alization based on the continuum topology may have redundant
members. It is suggested that the layout arrangement of steel re-
inforcement should follow the optimal strut-and-tie model as
closely as possible.

Conventional drawing board methods are especially not effi-
cient in developing optimal strut-and-tie models in concrete
members under multiple load cases because it is difficult to su-
perpose different models for different load cases. The present
computer-based topology optimization procedure, however, can
easily deal with multiple loading conditions, and it is not limited
to single and symmetry loading, although examples presented
herein consider only one load case. The proposed design opti-
mization procedure can also be applied to finding optimal strut-
and-tie models in prestressed concrete structures and reinforced
concrete shearwalls. 

FURTHER RESEARCH
Further theoretical research should be focused on studying

the effect of material property on the optimal strut-and-tie mod-
els and minimizing the effects of element mesh size and remov-
al ratios on the results. Experimental work is also needed to
investigate the ultimate load capacity of reinforced concrete
members that are designed using optimal strut-and-tie models
generated by the present topology optimization technique. Test
results will be compared with current codes of practice.

CONCLUSIONS
A performance-based evolutionary topology optimization

method for automatically developing optimal strut-and-tie mod-
els in reinforced concrete structures has been presented in this
paper. Five examples that cover various types of reinforced con-
crete members have been provided to illustrate the effectiveness
of the proposed optimization procedure. It has been shown that
strut-and-tie models generated by the present optimization pro-
cedure are supported by existing analytical solutions and exper-
imental observations. The method can also be applied to finding
optimal strut-and-tie models in prestressed concrete structures
and reinforced concrete shearwalls. Further theoretical and ex-
perimental work is needed to make topology optimization an in-
tegrated and friendly routine design tool for concrete designers. 

Based on the present study, the following conclusions are drawn:
1. The proposed method in this paper is most appropriately

used for finding optimal strut-and-tie models in nonflexural
concrete members and in slender beams with L/D  ≤ 5;

2. For very slender concrete beams, the optimal topologies
obtained by the topology optimization method are continuum-
like structures in which strut-and-tie actions are difficult to be
identified;

3. The present study shows that for a deep beam loaded at the
bottom, the vertical and inclined reinforcement should be pro-
vided to transfer the loads to the compressive arch with suffi-
cient anchorage, but not necessarily to the top of the deep beam,
depending on the span-depth ratio of the beam;

4. When openings intercept the natural load paths, the load is
to be rerouted around the openings where inclined tensile ties
join the upper and lower struts. It is important to provide in-
clined reinforcement at the top and bottom of the opening. This
inclined reinforcement is efficient for crack control and for in-
creasing the ultimate load capacity of the deep beam;

5. For reinforced concrete beams with L/D  ≥ 3, inclined rein-
forcements bent up from bottom steel bars are most efficient in
resisting shear in the shear spans; and

6. In the structural idealization of corbels, the column that
joins the corbel should be considered together with the corbel in
developing the strut-and-tie model.
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Fig. 14—Optimization history of strut-and-tie model in corbel:
(a) topology at iteration 20; (b) topology at iteration 40; (c)
optimal topology; and (d) optimal strut-and-tie model.
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CONVERSION FACTORS
1 mm = 0.039 in.
1 kN = 0.2248 kips

1 MPa = 145 psi

NOTATIONS
b = width of member
b0 = initial width of beam
D = depth of beam
E = Young’s modulus of concrete
{F j} = virtual unit load vector
fc = compressive design strength of concrete
fc ′ = compressive cylinder strength of concrete
[K ] = stiffness matrix of structure
[Kr] = stiffness matrix of resulting structure
[ke] = stiffness matrix of e th element
L = span of beam
m = total number of displacement constraints
n = total number of elements
[P] = load vector
PI = performance index
te = thickness of e th element
u0 j = j th constrained displacement most critical in initial design
uij = j th constrained displacement most critical in current design
uj = absolute value of j th constrained displacement
uj* = prescribed limit of u j
{u} = nodal displacement vector
{ue} = displacement vector of eth element under real loads
{uej} = displacement vector of eth element under virtual unit load
{uj} = displacement vector of structure under virtual unit load
W = total weight of structure
W0 = actual weight of initial design
W0

s  = scaled weight of initial design
Wi = actual weight of current design at ith iteration
we = weight of e th element
αe = virtual strain energy of eth element
[∆K] = change of stiffness due to element removal
{∆u} = change of displacement vector
λj = weighting parameter
ν = Poisson’s ratio
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