Highly heritable resistance to root-lesion nematode (Pratylenchus thornei) in Australian chickpea germplasm observed using an optimised glasshouse method and multi-environment trial analysis

Rodda, M. S. and Hobson, K. B. and Forknall, C. R. and Daniel, R. P. and Fanning, J. P. and Pounsett, D. D. and Simpfendorfer, S. and Moore, K. J. and Owen, K. J. and Sheedy, J. G. and Thompson, J. P. and Hollaway, G. J. and Slater, A. T. (2016) Highly heritable resistance to root-lesion nematode (Pratylenchus thornei) in Australian chickpea germplasm observed using an optimised glasshouse method and multi-environment trial analysis. Australasian Plant Pathology, 45 (3). pp. 309-319. ISSN 0815-3191

Abstract

Pratylenchus thornei is a root-lesion nematode (RLN) of economic significance in the grain growing regions of Australia. Chickpea (Cicer arietinum) is a significant legume crop grown throughout these regions, but previous testing found most cultivars were susceptible to P. thornei. Therefore, improved resistance to P. thornei is an important objective of the Australian chickpea breeding program. A glasshouse method was developed to assess resistance of chickpea lines to P. thornei, which requires relatively low labour and resource input, and hence is suited to routine adoption within a breeding program. Using this method, good differentiation of chickpea cultivars for P. thornei resistance was measured after 12 weeks. Nematode multiplication was higher for all genotypes than the unplanted control, but of the 47 cultivars and breeding lines tested, 17 exhibited partial resistance, allowing less than two fold multiplication. The relative differences in resistance identified using this method were highly heritable (0.69) and were validated against P. thornei data from seven field trials using a multi-environment trial analysis. Genetic correlations for cultivar resistance between the glasshouse and six of the field trials were high (>0.73). These results demonstrate that resistance to P. thornei in chickpea is highly heritable and can be effectively selected in a limited set of environments. the improved resistance found in a number of the newer chickpea cultivars tested shows that some advances have been made in the P. thornei resistance of Australian chickpea cultivars, and that further targeted breeding and selection should provide incremental improvements.


Statistics for USQ ePrint 29006
Statistics for this ePrint Item
Item Type: Article (Commonwealth Reporting Category C)
Refereed: Yes
Item Status: Live Archive
Additional Information: Files associated with this item cannot be displayed due to copyright restrictions.
Faculty / Department / School: Current - Institute for Agriculture and the Environment
Date Deposited: 06 Jul 2016 00:09
Last Modified: 06 Jul 2016 01:16
Uncontrolled Keywords: plant breeding; resistance screening; Cicer reticulatum; Cicer echinospermum
Fields of Research : 07 Agricultural and Veterinary Sciences > 0703 Crop and Pasture Production > 070305 Crop and Pasture Improvement (Selection and Breeding)
07 Agricultural and Veterinary Sciences > 0703 Crop and Pasture Production > 070308 Crop and Pasture Protection (Pests, Diseases and Weeds)
Socio-Economic Objective: B Economic Development > 82 Plant Production and Plant Primary Products > 8205 Winter Grains and Oilseeds > 820503 Grain Legumes
D Environment > 96 Environment > 9604 Control of Pests, Diseases and Exotic Species > 960403 Control of Animal Pests, Diseases and Exotic Species in Farmland, Arable Cropland and Permanent Cropland Environments
Identification Number or DOI: 10.1007/s13313-016-0409-4
URI: http://eprints.usq.edu.au/id/eprint/29006

Actions (login required)

View Item Archive Repository Staff Only