COMPACT INTEGRATED RADIAL BASIS FUNCTION MODELLING OF PARTICULATE SUSPENSIONS

A dissertation submitted by

Nha Thai-Quang

For the award of the degree of

Doctor of Philosophy

2014
Dedication

To my parents, my brother and my wife.
Certification of Dissertation

I certify that the ideas, experimental work, results and analyses, software and conclusions reported in this dissertation are entirely my own effort, except where otherwise acknowledged. I also certify that the work is original and has not been previously submitted for any other award.

Nha Thai-Quang, Candidate Date

ENDORSEMENT

Prof. Nam Mai-Duy, Principal supervisor Date

Prof. Thanh Tran-Cong, Co-supervisor Date

Dr. Canh-Dung Tran, Co-supervisor Date
Acknowledgments

I would like to express my profound gratitude to my supervisors, Prof. Nam Mai-Duy, Prof. Thanh Tran-Cong and Dr. Canh-Dung Tran for their invaluable support and effectively helpful guidance throughout this research work. Without their continuous support and guidance, my knowledge would not have been improved as today and this thesis would not have been completed.

I would like to acknowledge Dr. Khoa Le-Cao, my senior, for the helpful discussion during the period when we worked together. I am also thankful to all my seniors, labmates, colleagues and friends, for their assistance and encouragement over the course of my study.

I gratefully acknowledge the financial supports for my Ph.D. study including a Postgraduate Research Scholarship of The University of Southern Queensland, a Top Up of Faculty of Health, Engineering and Sciences, and a Supplement of Computational Engineering and Science Research Centre. In addition, I would like to thank Dr. Andrew Wandel and Dr. Canh-Dung Tran for offering me a position of teaching assistant. I also would like to thank staffs at the Faculty (A/Prof. Armando Apan, Ms. Juanita Ryan, Ms. Katrina Hall, Ms. Marie Morris, Ms. Melanie Loach, and Mr. Martin Geach) for their kind assistance in the matter of paper works.

Last but not least, I am eternally indebted to my family and my wife Thao Duong for their unconditional love, support, and encouragement to pursue this research endeavour. I would like to dedicate this work to them with my sincerest thanks.
Notes to Readers

All content of the present thesis is recorded on the attached CD-ROM, including the following files:

2. Chapter6-Oscillating-Circular-Cylinder-Re100.wmv: An animation showing the evolution of the horizontal velocity field of the flow induced by an oscillating circular cylinder for $Re = 100$ (Chapter 6, Section 6.4.2). Online at http://www.youtube.com/watch?v=k0uQsA51YY0.

3. Chapter6-Oscillating-Circular-Cylinder-Re800.wmv: An animation showing the evolution of the horizontal velocity field of the flow induced by an oscillating circular cylinder for $Re = 800$ (Chapter 6, Section 6.4.2). Online at http://www.youtube.com/watch?v=YJlFojDuPs4.

4. Chapter6-Single-Particle-Vertical-Velocity.wmv: An animation showing the sedimentation of a particle and the evolution of the vertical velocity field of the flow in a closed box (Chapter 6, Section 6.4.3). Online at http://www.youtube.com/watch?v=OItYnm8rbvQ.

5. Chapter6-Single-Particle-Vorticity.wmv: An animation showing the sedimentation of a particle and the evolution of the vorticity of the flow in a closed box (Chapter 6, Section 6.4.3). Online at http://www.youtube.com/watch?v=X2miOpFafIU.

7. Chapter6-Two-Particles-Drafting-Kissing-Tumbling-Vorticity.wmv: An animation showing the drafting-kissing-tumbling phenomenon of two settling particles and the evolution of the vorticity of the flow in a closed box (Chapter 6, Section 6.4.4). Online at http://www.youtube.com/watch?v=Qc1FqNJsLbI.
Abstract

The present Ph.D. thesis is concerned with the development of computational procedures based on Cartesian grids, point collocation, immersed boundary method, and compact integrated radial basis functions (CIRBF), for the simulation of heat transfer and steady/unsteady viscous flows in complex geometries, and their applications for the prediction of macroscopic rheological properties of particulate suspensions.

The thesis consists of three main parts. In the first part, integrated radial basis function approximations are developed into compact local form to achieve sparse system matrices and high levels of accuracy together. These stencils are employed for the discretisation of the Navier-Stokes equation in the pressure-velocity formulation. The use of alternating direction implicit (ADI) algorithms to enhance the computational efficiency is also explored. In the second part, compact local IRBF stencils are extended for the simulation of flows in multiply-connected domains, where the direct forcing-immersed boundary (DFIB) method is adopted to handle such complex geometries efficiently. In the third part, the DFIB-CIRBF method is applied for the investigation of suspensions of rigid particles in a Newtonian liquid, and the prediction of their bulk viscosity and stresses.

The proposed computational procedures are verified successfully with several test problems in Computational Fluid Dynamics and Computational Rheology. Accurate results are achieved using relatively coarse grids.
Papers Resulting from the Research

Journal Articles

Conference Papers

Contents

Dedication i

Certification of Dissertation ii

Acknowledgments iii

Notes to Readers iv

Abstract v

Papers Resulting from the Research vi

Contents viii

Acronyms & Abbreviations xiv

List of Tables xvi

List of Figures xix

Chapter 1 Introduction 1

1.1 Suspensions 1

1.2 Numerical methods 2
1.2.1 Simulating fluid flows 2
1.2.2 Modelling fluid-solid systems 3
1.3 Radial basis functions 4
1.4 Motivation and objectives 5
1.5 Outline ... 6

Chapter 2 A compact IRBF scheme for steady-state fluid flows 8

2.1 Introduction .. 8
2.2 Mathematical model .. 10
2.3 A brief review of the global 1D-IRBF scheme 11
2.4 Proposed method .. 13
 2.4.1 A high-order compact local IRBF scheme 13
 2.4.2 Two boundary treatments for the pressure 15
 2.4.3 Solution procedure 17
2.5 Numerical examples ... 18
 2.5.1 Ordinary differential equation (ODE) 20
 2.5.2 Analytic Stokes flow 23
 2.5.3 Recirculating cavity flow driven by combined shear and
 body forces ... 23
 2.5.4 Lid-driven cavity flow 26
2.6 Concluding remarks ... 31

Chapter 3 A compact IRBF scheme for transient flows 37

3.1 Introduction .. 37
3.2 Problem formulations 39
3.2.1 Diffusion equation .. 39
3.2.2 Burgers’ equation ... 39
3.2.3 Navier-Stokes equation 39
3.3 Numerical formulations 40
 3.3.1 Temporal discretisation 40
 3.3.2 Spatial discretisation 42
3.4 Numerical examples .. 50
 3.4.1 Diffusion equations 50
 3.4.2 Stokes flow ... 53
 3.4.3 Burgers’ equation .. 54
 3.4.4 Taylor decaying vortices 59
 3.4.5 Torsionally oscillating lid-driven cavity flow 62
3.5 Concluding remarks .. 64

Chapter 4 Incorporation of Alternating Direction Implicit (ADI) algorithm into compact IRBF scheme 70

4.1 Introduction .. 70
4.2 A brief review of ADI methods 72
 4.2.1 The Peaceman-Rachford method 72
 4.2.2 The Douglas-Rachford method 73
 4.2.3 Karaa’s method .. 73
 4.2.4 You’s method .. 74
4.3 Proposed schemes ... 74
 4.3.1 Spatial discretisation 75
4.3.2 Temporal discretisation .. 83
4.3.3 Spatial - temporal discretisation 83
4.4 Numerical examples .. 85
 4.4.1 Unsteady diffusion equation 86
 4.4.2 Unsteady convection-diffusion equation 88
 4.4.3 Steady convection-diffusion equation 94
4.5 Concluding remarks .. 97

Chapter 5 Incorporation of direct forcing immersed boundary (DFIB) method into compact IRBF scheme 98

 5.1 Introduction ... 98
 5.2 Governing equations .. 101
 5.3 Numerical formulation ... 102
 5.3.1 Direct forcing (DF) method 103
 5.3.2 Spatial discretisation 105
 5.3.3 Temporal discretisation 108
 5.3.4 Algorithm of the computational procedure 109
 5.4 Numerical examples ... 111
 5.4.1 Taylor-Green vortices 112
 5.4.2 Rotational flow .. 115
 5.4.3 Lid-driven cavity flow with multiple solid bodies 116
 5.4.4 Flow between a rotating circular and a fixed square cylinder 120
 5.4.5 Natural convection in an eccentric annulus between two circular cylinders 124
 5.5 Concluding remarks ... 125
Chapter 6 A DFIB-CIRBF approach for fluid-solid interactions in particulate fluids 132
 6.1 Introduction 132
 6.2 Mathematical formulation 135
 6.2.1 Governing equations for fluid motion ... 136
 6.2.2 Direct forcing method 136
 6.2.3 Governing equations for particle motion 139
 6.2.4 Particle-particle and particle-wall collision models ... 141
 6.3 Numerical formulation 142
 6.4 Numerical examples 144
 6.4.1 Taylor-Green vortices 145
 6.4.2 Induced flow by an oscillating circular cylinder ... 146
 6.4.3 Single particle sedimentation 149
 6.4.4 Drafting-kissing-tumbling behaviour of two settling particles ... 152
 6.5 Concluding remarks 157

Chapter 7 A DFIB-CIRBF approach for the rheology of particulate suspensions 161
 7.1 Introduction 161
 7.2 Mathematical formulation 163
 7.2.1 Fluid motion 164
 7.2.2 Sliding bi-periodic frame concept 165
 7.2.3 Direct forcing method 166
 7.2.4 Particle motion 168
Contents

7.2.5 Rheological properties 172
7.3 Numerical formulation ... 174
 7.3.1 Spatial discretisation 174
 7.3.2 Temporal discretisation 174
 7.3.3 Solution procedure .. 176
7.4 Numerical results .. 177
 7.4.1 Analysis of periodic boundary conditions 177
 7.4.2 Particulate suspensions 178
 7.4.3 Many particles ... 181
7.5 Concluding remarks ... 190

Chapter 8 Conclusions .. 192
 8.1 Research contributions 192
 8.2 Possible future work .. 194

References ... 195
<table>
<thead>
<tr>
<th>Acronym</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1D-IRBF</td>
<td>One-dimensional Integrated Radial Basis Function</td>
</tr>
<tr>
<td>2D</td>
<td>Two Dimensional</td>
</tr>
<tr>
<td>ALE-FEM</td>
<td>Arbitrary Lagrangian-Eulerian Finite Element Method</td>
</tr>
<tr>
<td>ADI</td>
<td>Alternating Direction Implicit</td>
</tr>
<tr>
<td>ADI-CIRBF-1</td>
<td>Alternating Direction Implicit-Compact Integrated Radial Basis Function-Scheme 1</td>
</tr>
<tr>
<td>ADI-CIRBF-2</td>
<td>Alternating Direction Implicit-Compact Integrated Radial Basis Function-Scheme 2</td>
</tr>
<tr>
<td>BEM</td>
<td>Boundary Element Method</td>
</tr>
<tr>
<td>BICGSTAB</td>
<td>Biconjugate Gradient Stabilised Method</td>
</tr>
<tr>
<td>BSQI</td>
<td>B-spline Quasi-Interpolation</td>
</tr>
<tr>
<td>CBGM</td>
<td>Cubic B-spline Galerkin Methods</td>
</tr>
<tr>
<td>CDD</td>
<td>Convection-Dominated Diffusion</td>
</tr>
<tr>
<td>CFD</td>
<td>Computational Fluid Dynamics</td>
</tr>
<tr>
<td>CIRBF-1</td>
<td>Compact Integrated Radial Basis Function-Scheme 1</td>
</tr>
<tr>
<td>CIRBF-2</td>
<td>Compact Integrated Radial Basis Function-Scheme 2</td>
</tr>
<tr>
<td>CIRBF-3</td>
<td>Compact Integrated Radial Basis Function-Scheme 3</td>
</tr>
<tr>
<td>CLIRBF</td>
<td>Compact Local Integrated Radial Basis Function</td>
</tr>
<tr>
<td>CPU</td>
<td>Central Processing Unit</td>
</tr>
<tr>
<td>DF</td>
<td>Direct Forcing</td>
</tr>
<tr>
<td>DFD</td>
<td>Domain-Free Discretisation Method</td>
</tr>
<tr>
<td>DFIB</td>
<td>Direct Forcing Immersed Boundary</td>
</tr>
<tr>
<td>DFIB-CIRBF</td>
<td>Direct Forcing Immersed Boundary-Compact Integrated Radial Basis Function</td>
</tr>
<tr>
<td>DKT</td>
<td>Drafting Kissing Tumbling</td>
</tr>
<tr>
<td>DLM/FDM</td>
<td>Distributed Lagrange Multiplier/Fictitious Domain Method</td>
</tr>
<tr>
<td>DNS</td>
<td>Direct Numerical Simulation</td>
</tr>
<tr>
<td>DQM</td>
<td>Differential Quadrature Method</td>
</tr>
<tr>
<td>DRBFN</td>
<td>Direct Radial Basis Function Network</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Definition</td>
</tr>
<tr>
<td>--------------</td>
<td>------------</td>
</tr>
<tr>
<td>EHOC-ADI</td>
<td>Exponential High-order Compact Alternating Direction Implicit</td>
</tr>
<tr>
<td>FBM</td>
<td>Fictitious Boundary Method</td>
</tr>
<tr>
<td>FD</td>
<td>Finite Difference</td>
</tr>
<tr>
<td>FDM</td>
<td>Finite Difference Method or Fictitious Domain Method</td>
</tr>
<tr>
<td>FE</td>
<td>Finite Element</td>
</tr>
<tr>
<td>FEM</td>
<td>Finite Element Method</td>
</tr>
<tr>
<td>FV</td>
<td>Finite Volume</td>
</tr>
<tr>
<td>FVM</td>
<td>Finite Volume Method</td>
</tr>
<tr>
<td>GMRES</td>
<td>Generalized Minimal Residual</td>
</tr>
<tr>
<td>HOC-ADI</td>
<td>High-order Compact Alternating Direction Implicit</td>
</tr>
<tr>
<td>HPD-ADI</td>
<td>High-order Hybrid Pade Alternating Direction Implicit</td>
</tr>
<tr>
<td>IB</td>
<td>Immersed Boundary</td>
</tr>
<tr>
<td>IBM</td>
<td>Immersed Boundary Method</td>
</tr>
<tr>
<td>IIM</td>
<td>Immersed Interface Method</td>
</tr>
<tr>
<td>IRBF</td>
<td>Integrated Radial Basis Function</td>
</tr>
<tr>
<td>IRBFN</td>
<td>Integrated Radial Basis Function Network</td>
</tr>
<tr>
<td>ISPM</td>
<td>Immersed Structural Potential Method</td>
</tr>
<tr>
<td>LBM</td>
<td>Lattice Boltzmann Method</td>
</tr>
<tr>
<td>MQ</td>
<td>Multiquadric</td>
</tr>
<tr>
<td>MQQI</td>
<td>Multiquadric Quasi-Interpolation</td>
</tr>
<tr>
<td>Ne</td>
<td>Error Norm</td>
</tr>
<tr>
<td>ODE</td>
<td>Ordinary Differential Equation</td>
</tr>
<tr>
<td>P_e</td>
<td>Peclet number</td>
</tr>
<tr>
<td>PDE</td>
<td>Partial Differential Equation</td>
</tr>
<tr>
<td>PDE-ADI</td>
<td>Pade Scheme-Based Alternating Direction Implicit</td>
</tr>
<tr>
<td>PR-ADI</td>
<td>Peaceman Rachford Alternating Direction Implicit</td>
</tr>
<tr>
<td>QBCM</td>
<td>Quartic B-spline Collocation Methods</td>
</tr>
<tr>
<td>QBGM</td>
<td>Quadratic Galerkin Methods</td>
</tr>
<tr>
<td>RBF</td>
<td>Radial Basis Function</td>
</tr>
<tr>
<td>RBFN</td>
<td>Radial Basis Function Network</td>
</tr>
<tr>
<td>Re</td>
<td>Reynolds number</td>
</tr>
<tr>
<td>RMS</td>
<td>Root Mean Square</td>
</tr>
<tr>
<td>SIM</td>
<td>Sharp Interface Method</td>
</tr>
<tr>
<td>SM</td>
<td>Spectral Method</td>
</tr>
<tr>
<td>SVD</td>
<td>Singular Value Decomposition</td>
</tr>
<tr>
<td>VBM</td>
<td>Virtual Boundary Method</td>
</tr>
</tbody>
</table>
List of Tables

2.1 Stokes flow: RMS errors, local and overall convergence rates for u, v and p by the proposed method and FDM. The overall convergence rate α is presented in the form of $O(h^\alpha)$. 24

2.2 Recirculating cavity flow, $Re = 100$: RMS errors and local convergence rates for u, v and p. 27

2.3 Lid-driven cavity flow, $Re = 100$: Extrema of the vertical and horizontal velocity profiles along the horizontal and vertical centralines, respectively, of the cavity. “Errors” are relative to the “Benchmark” solution. 28

2.4 Lid-driven cavity flow, $Re = 1000$: Extrema of the vertical and horizontal velocity profiles along the horizontal and vertical centralines, respectively, of the cavity. “Errors” are relative to the “Benchmark” solution. 28

2.5 Lid-driven cavity flow: Extrema of the vertical and horizontal velocity profiles along the horizontal and vertical centralines, respectively, of the cavity at different Reynolds numbers $Re \in \{400, 3200\}$. 29

3.1 Shock wave propagation, grid $N = 37$, $Re = 100$, $t = 0.5$: the exact, present and some other numerical solutions. 56

3.2 Shock-like solution: RMS and L_∞ errors by the present and some other numerical methods. 58

3.3 Taylor decaying vortices, $k = 2$, $\Delta t = 0.002$, $t = 2$, $Re = 100$: RMS errors and average rates of convergence for the velocity by the present and some other numerical methods. 60
3.4 Taylor decaying vortices, $k = 2$, $\Delta t = 0.002$, $t = 2$, $Re = 100$: RMS errors, average rates of convergence for the pressure and CPU time (seconds) by the present and some other numerical methods. .. 61

4.1 Unsteady diffusion equation, $t = 1.25$, 81×81: Solution accuracy of the two present schemes against time step. 87

4.2 Unsteady diffusion equation, $t = 0.125$, $\Delta t = h^2$: Effect of grid size on the solution accuracy. 87

4.3 Unsteady convection-diffusion equation, 81×81, $t = 1.25$, $\Delta t = 0.00625$: Comparison of the solution accuracy between the present schemes and some other techniques. 91

4.4 Unsteady convection-diffusion equation, 81×81, $t = 1.25$, $\Delta t = 2.5E - 4$: Comparison of the solution accuracy between the present schemes and some other techniques for case I. 91

4.5 Unsteady convection-diffusion equation, 81×81, $t = 0.0125$, $\Delta t = 2.5E - 6$: Comparison of the solution accuracy between the present schemes and some other techniques for case II. 91

4.6 Unsteady convection-diffusion equation, $t = 0.0125$, $\Delta t = 2.5E - 6$: The solution accuracy of the present schemes and some other techniques against grid size for case II. LCR stands for “local convergence rate”. 93

5.1 Flow between rotating circular and fixed square cylinders: Maximum values of the stream function (ψ_{max}) and vorticity (ζ_{max}), and values of the stream function on the circular cylinder (ψ_c) by the present method and FDM. 122

5.2 Natural convection in eccentric circular-circular annulus, symmetrical flows: the maximum values of the stream function (ψ_{max}) for two special cases $\varphi \in \{-90^\circ, 90^\circ\}$ by the present and some other numerical schemes. 125

5.3 Natural convection in eccentric circular-circular annulus, unsymmetrical flows: the stream function values at the inner cylinders (ψ_w) for $\varepsilon \in \{0.25, 0.50, 0.75\}$ and $\varphi \in \{-45^\circ, 0^\circ, 45^\circ\}$ by the present and some other numerical schemes. 126
6.1 Single particle sedimentation, $\Delta t = 0.001$: Comparison of the terminal settling velocity and maximum particle Reynolds number.
List of Figures

2.1 1D-IRBF centres on a Cartesian grid line. 11

2.2 Local 3-point 1D-IRBF stencil. .. 13

2.3 The plots of basis functions employed in the present studies with \(c = 0 \) and \(a = 0.2 \). ... 19

2.4 ODE, \(N = 51 \): the effects of the MQ width \(\beta \) on the solution accuracy. ... 21

2.5 ODE, \(\beta = 20 \), \(N \in \{5, 7, 9, \ldots, 51\} \): the effects of the grid size \(h \) on the system matrix condition (a) and the solution accuracy (b) for the FDM and the present scheme. The matrix condition number grows as \(O(h^{-2}) \) for the two methods while the solution converges as \(O(h^2) \) for FDM and \(O(h^{3.23}) \) for the IRBF method. 22

2.6 Recirculating cavity flow: A schematic diagram of the physical domain (non-dimensionalised). 25

2.7 Recirculating cavity flow, Treatment 2, \(Re = 100 \): Variations of \(u \) along the vertical centreline (a) and \(v \) along the horizontal centreline (b) by the present scheme using a grid of \(21 \times 21 \) and the exact solution (Shih and Tan, 1989). 30

2.8 Lid-driven cavity flow, \(Re = 1000 \): Profiles of the \(u \)-velocity along the vertical centreline (a) and the \(v \)-velocity along the horizontal centreline (b) using several grids. Note that curves for the last three grids are indistinguishable and agree well with the benchmark FD results. .. 32

2.9 Lid-driven cavity flow, \(129 \times 129 \): Profiles of the \(u \)-velocity along the vertical centreline and the \(v \)-velocity along the horizontal centreline for \(Re = 100 \) (a), \(Re = 400 \) (b), \(Re = 1000 \) (c) and \(Re = 3200 \) (d). ... 33
2.10 Lid-driven cavity flow, 129 × 129: Isobaric lines of the flow for
Re = 100 (a), Re = 400 (b), Re = 1000 (c) and Re = 3200 (d).
The contour values used here are taken to be the same as those
in Abdallah (1987), Botella and Peyret (1998) and Bruneau and
Saad (2006). .. 34

2.11 Lid-driven cavity flow, 129 × 129: Streamlines of the flow for
Re = 100 (a), Re = 400 (b), Re = 1000 (c) and Re = 3200 (d).
The contour values used here are taken to be the same as those
in Ghia et al. (1982). 35

2.12 Lid-driven cavity flow, 129 × 129: Iso-vorticity lines of the flow
for Re = 100 (a), Re = 400 (b), Re = 1000 (c) and Re = 3200
(d). The contour values used here are taken to be the same as
those in Ghia et al. (1982)...................... 36

3.1 1D diffusion equation, N ∈ {11, 21, . . . , 101}, ∆t = 0.001, t = 1:
The effect of grid size h on the solution accuracy by the proposed
scheme. The solution error behaves apparently as Ne ≈ O(h3.4). 51

3.2 1D diffusion equation, N = 201, ∆t ∈ {1/100, 1/90, . . . , 1/10}, t = 1:
The effect of time step ∆t on the solution accuracy by the
proposed scheme. The solution error behaves apparently as Ne ≈
O(∆t2). ... 52

3.3 2D diffusion equation, {11 × 11, 21 × 21, . . . , 51 × 51}, ∆t = 0.01,
t = 1: The effect of grid size h on the solution accuracy by
the proposed scheme. The solution error behaves apparently as Ne ≈ O(h3.31). ... 53

3.4 Stokes flow, {11 × 11, 21 × 21, . . . , 51 × 51}, ∆t = 10−5, t = 1:
The effect of grid size h on the solution accuracy by the proposed
scheme. The solution error behaves as Ne ≈ O(h3.07) and Ne ≈ O(h3.1) for the velocity (the two indistinguishable lower lines)
and the pressure, respectively. 54

3.5 Shock wave propagation, N ∈ {11, 21, . . . , 101}, Re = 100,
∆t = 10−5, t = 0.5: The effect of grid size h on the solution
accuracy by the proposed scheme. The solution error behaves
apparently as Ne ≈ O(h4.47). 55

3.6 Shock-like solution, N ∈ {11, 21, . . . , 101}, Re ∈ {100, 200},
∆t = 10−5, t = 1.7: The effect of grid size h on the solution
accuracy by the proposed scheme. The solution error behaves as
Ne ≈ O(h4.03) for Re = 100 and Ne ≈ O(h3.83) for Re = 200. . . 57
3.7 Torsionally oscillating lid-driven cavity flow: Geometry and boundary conditions. 62

3.8 Torsionally oscillating lid-driven cavity flow: Profiles of u-velocity along the vertical centreline during a half cycle of the lid oscillation for three values of $\varpi \in \{0.1, 1, 10\}$ and three values of $Re \in \{100, 400, 1000\}$. Times used are $t_0 = 0$, $t_1 = K/8$, $t_2 = K/4$, $t_3 = 3K/8$, $t_4 = K/2$ and $t_5 = 3K/4$. 63

3.9 Torsionally oscillating lid-driven cavity flow: Profiles of v-velocity along the horizontal centreline during a half cycle of the lid oscillation for three values of $\varpi \in \{0.1, 1, 10\}$ and three values of $Re \in \{100, 400, 1000\}$. Times used are $t_0 = 0$, $t_1 = K/8$, $t_2 = K/4$, $t_3 = 3K/8$, $t_4 = K/2$ and $t_5 = 3K/4$................................ 65

3.10 Torsionally oscillating lid-driven cavity flow, 65×65: Evolution of streamlines during a half-cycle of the lid motion at $Re = 400$ and $\varpi = 1$. 66

3.11 Torsionally oscillating lid-driven cavity flow, 65×65: Evolution of streamlines during a half-cycle of the lid motion at $Re = 400$ and $\varpi = 10$. 67

3.12 Torsionally oscillating lid-driven cavity flow, 129×129: Evolution of streamlines during a half-cycle of the lid motion at $Re = 1000$ and $\varpi = 1$. 68

3.13 Torsionally oscillating lid-driven cavity flow, 129×129: Evolution of streamlines during a half-cycle of the lid motion at $Re = 1000$ and $\varpi = 10$. 69

4.1 Global 1D-IRBF stencil. 75

4.2 Special compact 4-point 1D-IRBF stencils for left and right boundary nodes. 79

4.3 Unsteady diffusion equation, $\{11 \times 11, 16 \times 16, \ldots, 41 \times 41\}$, $\Delta t = 10^{-5}$, $t = 0.0125$: The effect of grid size h on the solution accuracy for the two present schemes. The solution converges as $O(h^{2.74})$ for ADI-CIRBF-1 and $O(h^{4.76})$ for ADI-CIRBF-2. 86

4.4 Unsteady diffusion equation, $\Delta t = 10^{-4}$: The solution accuracy of the standard PR-ADI and the two present schemes against time. 88
4.5 Unsteady convection-diffusion equation, \{31 \times 31, 41 \times 41, \ldots, 81 \times 81\}, \Delta t = 10^{-4}, t = 1.25: The effect of grid size \(h \) on the solution accuracy for the two present schemes. The solution converges as \(O(h^{4.07}) \) for ADI-CIRBF-1 and \(O(h^{4.32}) \) for ADI-CIRBF-2. 89

4.6 Unsteady convection-diffusion equation, 81 \times 81, \Delta t = 0.00625: The initial and the computed pulses at \(t = 1.25 \) by ADI-CIRBF-1 (a) and ADI-CIRBF-2 (b). .. 89

4.7 Unsteady convection-diffusion equation, 81 \times 81, \Delta t = 0.00625: Surface plots of the pulse in the sub-region \(1 \leq x, y \leq 2 \) at \(t = 1.25 \) by the analytic solution (a), ADI-CIRBF-1 (b) and ADI-CIRBF-2 (c). 90

4.8 Unsteady convection-diffusion equation, 81 \times 81, \Delta t = 0.00625: The solution accuracy of the present schemes and some other techniques against time. .. 92

4.9 Unsteady convection-diffusion equation, 81 \times 81, \Delta t = 0.00625: Contour plots of the pulse in the sub-region \(1 \leq x, y \leq 2 \) at \(t = 1.25 \) by the analytic solution (a), standard PR-ADI (b), ADI-CIRBF-1 (c) and ADI-CIRBF-2 (d). 94

4.10 Steady convection-diffusion equation, \{11 \times 11, 16 \times 16, \ldots, 51 \times 51\}: The effect of grid size \(h \) on the solution accuracy for the standard PR-ADI and two present schemes. The solution converges as \(O(h^{1.94}) \), \(O(h^{3.02}) \) and \(O(h^{4.53}) \) for PR-ADI, ADI-CIRBF-1 and ADI-CIRBF-2, respectively. 95

4.11 Steady convection-diffusion equation, 51 \times 51: Profiles of the solution \(u \) along the vertical and horizontal centrelines by ADI-CIRBF-1 (a)-(b) and ADI-CIRBF-2 (c)-(d). 96

5.1 A schematic outline for the problem domain. .. 102

5.2 Special compact 2-point IRBF stencils for the left and right boundary nodes. .. 106

5.3 Poisson equation, circular domain: Computational domain and its discretisation. .. 112
5.4 Poisson equation, circular domain, \{12 \times 12, 22 \times 22, \ldots, 102 \times 102\}: The solution accuracy (a) and the matrix condition number (b) against grid size by FDM and the present method. The solution converges as \(O(h^{2.03})\) and \(O(h^{3.17})\) while the matrix condition grows as \(O(h^{-2.52})\) and \(O(h^{-2.46})\) for FDM and the present method, respectively. 113

5.5 Taylor-Green vortices, circular domain, \{12\times12, 22\times22, \ldots, 52\times52\}: The solution accuracy of the velocity components and pressure against grid size. The solution converges as \(O(h^{3.31}), O(h^{3.29})\) and \(O(h^{2.87})\) for \(x\)-component velocity, \(y\)-component velocity and pressure, respectively. 114

5.6 Taylor-Green vortices, circular domain, \(52 \times 52, \Delta t = 0.001\): the analytic (a) and computed (b) isolines of the vorticity field at \(t = 0.3\). 115

5.7 Taylor-Green vortices, concentric annulus: Computational domain and its discretisation (Eulerian nodes inside the annulus and on the outer boundary, Lagrangian nodes on the inner boundary with a grid of \(22 \times 22\)). 116

5.8 Taylor-Green vortices, concentric annulus, \(52 \times 52, \Delta t = 0.001\): the analytic (a) and computed (b) isolines of the vorticity field at \(t = 0.3\). 116

5.9 Taylor-Green vortices, concentric annulus, \{22\times22, 32\times32, \ldots, 52\times52\}: The solution accuracy of the velocity components and pressure against grid size. The solution converges as \(O(h^{2.02}), O(h^{2.03})\) and \(O(h^{2.02})\) for \(x\)-component velocity, \(y\)-component velocity and pressure, respectively. 117

5.10 Rotational flow generated by a circular ring rotating about its centre in a fluid filled square cavity, \(Re = 18, 65 \times 65, t = 10, \Delta t = h/4\): Distributions of the \(x\)-component velocity (a) and velocity vector (b) over the computational domain. 118

5.11 Lid-driven cavity flow with multiple solid bodies: Geometry and boundary condition. 119

5.12 Lid-driven cavity flow with multiple solid bodies: Velocity vector field. 119
5.13 Lid-driven cavity flow with multiple solid bodies: The effect of the grid size on the \(u \)-velocity profile along the diagonal \(x = y \). The curves are discontinuous due to the presence of a circular body on the diagonal around \(x = y = 0 \). 120

5.14 Flow between a rotating circular and a fixed square cylinder: Geometry and boundary conditions. 121

5.15 Flow between a rotating circular and a fixed square cylinder: Streamlines of the flow for several Reynolds numbers using a grid of \(131 \times 131 \). The contour values used here are taken to be the same as those in Lewis (1979), except those on the circular boundary. 123

5.16 Natural convection in eccentric circular-circular annulus: Geometry and boundary conditions (a) and distribution of nodes (b) (Eulerian nodes inside the annulus and on the outer boundary, Lagrangian nodes on the inner boundary with a grid of \(60 \times 60 \)). 125

5.17 Natural convection in an eccentric circular-circular annulus, symmetrical flows: Contour plots for the temperature (a) and stream function (b) fields for \(\varepsilon \in \{0.25, 0.50, 0.75, 0.95\} \) (from top to bottom) and \(\varphi = -90^\circ \). Each plot contains 22 contour lines whose levels vary linearly from the minimum to maximum values. 127

5.18 Natural convection in an eccentric circular-circular annulus, symmetrical flows: Contour plots for the temperature (a) and stream function (b) fields for \(\varepsilon \in \{0.25, 0.50, 0.75, 0.95\} \) (from top to bottom) and \(\varphi = 90^\circ \). Each plot contains 22 contour lines whose levels vary linearly from the minimum to maximum values. 128

5.19 Natural convection in an eccentric circular-circular annulus, unsymmetrical flows: Contour plots for the temperature (a) and stream function (b) fields for \(\varepsilon \in \{0.25, 0.50, 0.75\} \) (from top to bottom) and \(\varphi = -45^\circ \). Each plot contains 22 contour lines whose levels vary linearly from the minimum to maximum values. 129

5.20 Natural convection in an eccentric circular-circular annulus, unsymmetrical flows: Contour plots for the temperature (a) and stream function (b) fields for \(\varepsilon \in \{0.25, 0.50, 0.75\} \) (from top to bottom) and \(\varphi = 0^\circ \). Each plot contains 22 contour lines whose levels vary linearly from the minimum to maximum values. 130
5.21 Natural convection in an eccentric circular-circular annulus, unsymmetrical flows: Contour plots for the temperature (a) and stream function (b) fields for $\varepsilon \in \{0.25, 0.50, 0.75\}$ (from top to bottom) and $\varphi = 45^\circ$. Each plot contains 22 contour lines whose levels vary linearly from the minimum to maximum values. . . . 131

6.1 Configuration with several rigid particles and interstitial fluid domain. .. 136

6.2 Single particle sedimentation: Imaginary particle. 141

6.3 Taylor-Green vortices, 151×151, $\Delta t = 0.001$: Position of the embedded circle and the vorticity isolines at $t = 0.3$ for the analytic (a) and present (b) solutions. 146

6.4 Taylor-Green vortices, $\{31 \times 31, 61 \times 61, \ldots, 151 \times 151\}$, $\Delta t = 0.001$, $t = 0.3$: The effect of grid size h on the solution accuracy for the velocity. The solutions converge as about $O(h^2)$ for both the present and referential results (Uhlmann, 2005). 146

6.5 Induced flow by an oscillating circular cylinder: Configuration of the domain and boundary conditions. 147

6.6 Induced flow by an oscillating circular cylinder, 151×151, $\Delta t = 0.001$: Streamlines of the flow field for different Reynolds numbers at different times. 148

6.7 Induced flow by an oscillating circular cylinder, 151×151, $\Delta t = 0.001$: The evolution of the drag force for different Reynolds numbers. $Re = 100$ (dash line) and $Re = 800$ (solid line). 149

6.8 Single particle sedimentation: Schematic view and boundary conditions. .. 150

6.9 Single particle sedimentation, 101×301, $\Delta t = 0.001$: Contours of the vertical velocity at different times. Values of the contour lines: $\pm \{-0.5 : -0.5 : -5, 0.5 : 0.5 : 1.5\}$. 151

6.10 Single particle sedimentation, 101×301, $\Delta t = 0.001$: Streamlines of the flow field at different times. Values of the contour lines: $\pm \{0.1 : 0.1 : 0.9\}$. .. 152

6.11 Single particle sedimentation, 101×301, $\Delta t = 0.001$: Contours of the vorticity of the flow field at different times. Values of the contour lines: $\pm \{1, 5, 10, 20, 40, 80\}$. 153
6.12 Single particle sedimentation: Time histories of some quantities including the x-coordinate of the particle centre (a), the y-coordinate of the particle centre (b), the x-component of the translational particle velocity (c), the y-component of the translational particle velocity (d), the Reynolds number for the particle (e), and the translational kinetic energy (f) 154

6.13 Drafting-kissing-tumbling of two settling particles: Schematic view and boundary conditions. 156

6.14 Drafting-kissing-tumbling of two settling particles, 71×211, $\Delta t = 6.25 \times 10^{-5}$: The evolution of the horizontal (a) and the vertical (b) positions of the centre of the two particles. 156

6.15 Drafting-kissing-tumbling of two settling particles, 71×211, $\Delta t = 6.25 \times 10^{-5}$: The evolution of the horizontal (a) and the vertical (b) velocities of the two particles. 157

6.16 Drafting-kissing-tumbling of two settling particles, 71×211, $\Delta t = 6.25 \times 10^{-5}$: Contours of the velocity magnitude and the positions of particles at different times. 158

6.17 Drafting-kissing-tumbling of two settling particles, 71×211, $\Delta t = 6.25 \times 10^{-5}$: Contours of the vorticity and the positions of particles at different times. 159

7.1 A sliding bi-periodic frame with crossing and non-crossing suspended particles. .. 164

7.2 Illustration of parts of boundaries crossed by particles. 174

7.3 Couette flow, 31×31: Velocity vector field at different shear times. 177

7.4 Couette flow, 31×31: Condition number of the system matrix A. 178

7.5 One-particle problem: A periodic configuration of particles can be modelled by a frame with one single particle for the analysis of the flow. ... 179

7.6 One-particle problem: The angular velocity against the shear time for different particle radii. 179

7.7 One-particle problem, $R = 0.25$, 51×51, $\Delta t_p = 10^{-4}$: Contours of vorticity of the flow. Values of isolines are -0.5:0.25:2.5. 180
7.8 One-particle problem: The bulk shear stress (a) and the bulk normal-stress difference (b) against the shear time for different particle radii. ... 182

7.9 One-particle problem: Relative viscosity against solid-volume fraction. ... 183

7.10 Two-particle problem: Initial configuration of two particles depending on D. ... 183

7.11 Two-particle problem, $R = 0.12$: Contours of vorticity of the flow for $D = 0.25$. Values of isolines are -0.5:0.25:2.5. 184

7.12 Two-particle problem, $R = 0.12$: Contours of vorticity of the flow for $D = 0.025$. Values of isolines are -0.5:0.25:2.5. 185

7.13 Two-particle problem, $R = 0.12$: The orbit of the two particle centres for $D = 0.025$ and $D = 0.25$. 186

7.14 Two-particle problem, $R = 0.12$: Time-dependent bulk shear stress with respect to the x coordinate of the particle P_1 for $D = 0.025$ and $D = 0.25$. 186

7.15 Many-particle problem, $N_p \in \{1, 2, 3, 4, 5\}$: Relative viscosity against solid-volume fraction in dilute suspensions. The first five points on the left correspond to $R = 0.05$ and the last three points on the right correspond to $R = 0.12$. The results show that the relative viscosity is independent of particle size in the dilute limit. .. 187

7.16 Many-particle problem: Initial configurations of particles for five-particle problems with $R = 0.05$ (a) and $R = 0.12$ (b). 188

7.17 Many-particle problem: Vorticity isolines of the flow for five-particle problems with $R = 0.05$ (a) and $R = 0.12$ (b) at $t = 4$. Values of isolines are -0.2:0.2:2 for (a) and -2:0.25:3.5 for (b). . . 189

7.18 Many-particle problem, $R = 0.12$, $N_p \in \{1, 2, 3, 4, 5\}$: Shear stress against shear rate at different solid-volume fractions in dilute suspensions. 190

7.19 Many-particle problem, $R = 0.12$, $N_p \in \{1, 2, 3, 4, 5\}$: Flow index against solid-volume fraction in dilute suspensions. 190