Estimation of seepage losses from automated irrigation distribution channels during periods of shutdown

A dissertation submitted by

Amirali Moavenshahidi

For the Award of
Doctor of Philosophy

2013
ABSTRACT

Irrigated agriculture is the largest water consumer all over the world as well as in Australia. Therefore, managing water more effectively in irrigation distribution systems is one of the most important and urgent challenges facing Australia. The correct estimation of conveyance water losses from an irrigation system is vital for the proper management of the system. The loss of water due to seepage, leakage and evaporation from irrigation channels constitutes a substantial part of the usable water. The scarcity of water resources and inefficiency of irrigation infrastructures convinced the Australian government to pursue modernization and automation of irrigation distribution supply networks in major irrigation districts of the country. The automation includes installation of automatic control structures with remote monitoring, one example of which is the total channel control technology (TCC) of Rubicon Water. Main objectives of using automation are to supply water near-on-demand and to control channel water levels. TCC includes supervisory control and data acquisition (SCADA) technology which will result in integrated databases of real time measurements of flow and water levels for the whole system. This data has the potential to be used to identify sections of channel with high rates of seepage or leakage. Pondage tests are acknowledged as the best direct method for seepage measurement, and the recorded water level data from automated systems during periods of gate closure can be treated as pondage test data. A comprehensive review of seepage studies identified examples of the successful application of TCC data from a limited number of selected channels during certain periods of season. However, no study was located that used TCC data collected over the whole irrigation district or for whole irrigation seasons to estimate seepage and leakage losses during periods of gate shut down. Given that Coleambally Irrigation Corporation Limited was the only scheme able to provide data for three irrigation seasons, this study aimed to estimate seepage and leakage losses for the entire channel network of CIA using TCC data during periods of gate closure. Using Microsoft SQL server, a database containing the TCC data in the form of individual tables was created. A model consisting of the database and code written in C# was developed to identify all pondage conditions for any given pool in the network, to sort the pondage data into rejected and accepted samples based upon set criteria. Linear regression was used to give an estimate of the seepage rate for any gauge in a pool during a pondage condition. The
model was tested for the 2010/11 irrigation season and identified 1073 pondage conditions for different pools on the network, among which 295 were rejected as they did not meet the specified criteria. The model was also applied for 2009/10 and 2011/12 seasons and average seepage rates for each pondage and pool were estimated.

The results clearly showed that seepage losses from the CIA are significant, with approximately 20% of the estimated seepage rates in all three seasons greater than 0.5 mm/hr (12 mm/d). A number of cases with significantly high loss rates were observed during each season. The median seepage rate for 2011 was lower in comparison with the other two seasons, while the median seepage rates were similar between the 2009 and 2010 seasons.

A number of pools with several pondage conditions were identified and the possible factors affecting the estimation of seepage rates were evaluated. These include, duration of gate shut down, surface water elevation at the start of the pondage condition and its relation to supply level of the channel at each gauge, accumulated depth of rainfall during the pondage period, seasonal variations in seepage rate, number of water level measurements in the pondage, suspected unauthorized water usage, noise associated with measurements and leakage through macro pores in banks of the channels.

Pools with very high rates of water loss indicative of leakage were addressed and the application of a polynomial trend line rather than linear regression for modelling the seepage rate in those samples was assessed.

Given that higher loss rates occur at higher channel water elevations similar to operational levels, the corresponding seepage estimates were used to:

- identify pools with high loss rates which require remediation works, and
- give an estimate of the possible water loss during normal operation in each channel.

The loss rates at occurring at higher channel water elevations were compared with seepage estimates from an earlier study in the CIA which identified several locations potentially with high seepage losses. Results of the comparison showed a good agreement in those pools with moderate seepage losses. On the other hand, in pools where the present study indicated high loss rates and possible leakage at higher channel water elevations, the loss rates estimated from the TCC data were greater than in the earlier study.
CERTIFICATION OF DISSERTATION

I certify that the ideas, designs, experimental work, software code, results, analyses and conclusions presented in this dissertation are entirely my own effort, except where otherwise indicated and acknowledged.

I further certify that the work is original and has not been previously submitted for assessment in any other course or institution, except where specifically stated.

-- ------------------
Amirali Moavenshahidi, Candidate Date

Endorsement:

--- ----------------
Prof. Rod Smith, Principal supervisor Date

--- ----------------
Dr. Malcolm Gillies, Associate supervisor Date
ACKNOWLEDGEMENTS

The completion of this doctoral dissertation would not have been possible without the support of a great many people around me. I would like to take the time here to express my gratitude to some of those who have helped and inspired me during the past three years.

First and foremost, I would like to express my sincere gratitude to my principal supervisor Professor Rod Smith. Words cannot express my appreciation to him for being an inspiration at every step of the way. He believed in me and guided me to achieve this goal with unlimited patience, energy and motivation. It was an honour being his PhD student for the last three years. I equally thank my associate supervisor Doctor Malcolm Gillies whose invaluable technical advice is highly cherished. I sincerely thank them both for their enthusiasm, technical assistance and critical reviews during my PhD studies.

I am deeply thankful to the National Centre for Engineering in Agriculture (NCEA) for providing the major scholarship and to the Faculty of Engineering and Surveying (FoES) for the additional financial support.

I would also like to thank the Coleambally Irrigation Cooperative Company (CICL) especially Austin Evans for permission to use CIA as the case study of this research.

I am most grateful to the Rubicon Water especially Tony Oaks for provision of TCC data of CIA and giving me advice in regards the application of the data.

Finally to my parents and my sister who have encouraged me throughout my life. I am forever indebted to you for all your love, support, patience and inspiration that has led me to this point.
ABBREVIATION

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Full Form</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABS</td>
<td>Australian Bureau of Statistics</td>
</tr>
<tr>
<td>AWS</td>
<td>Automated Weather Station</td>
</tr>
<tr>
<td>ANCID</td>
<td>Australian National Committee on Irrigation and Drainage</td>
</tr>
<tr>
<td>CIA</td>
<td>Coleambally Irrigation Area</td>
</tr>
<tr>
<td>CICL</td>
<td>Coleambally Irrigation Corporation Limited</td>
</tr>
<tr>
<td>CSIRO</td>
<td>Commonwealth Scientific and Industrial Research Organisation</td>
</tr>
<tr>
<td>EM</td>
<td>Electro Magnetic</td>
</tr>
<tr>
<td>FoES</td>
<td>Faculty of Engineering and Surveying</td>
</tr>
<tr>
<td>GMW</td>
<td>Goulburn-Murray Water</td>
</tr>
<tr>
<td>LOC</td>
<td>Level Of Confidence</td>
</tr>
<tr>
<td>LOCP</td>
<td>Level Of Confidence Pool</td>
</tr>
<tr>
<td>NCEA</td>
<td>National Centre for Engineering in Agriculture</td>
</tr>
<tr>
<td>NMPP</td>
<td>Number of Measured Points per Pondage</td>
</tr>
<tr>
<td>NMPPP</td>
<td>Number of Measured Points Per Pool</td>
</tr>
<tr>
<td>NSW</td>
<td>New South Wales</td>
</tr>
<tr>
<td>Post</td>
<td>After remediation</td>
</tr>
<tr>
<td>Pre</td>
<td>Before remediation</td>
</tr>
<tr>
<td>SCADA</td>
<td>Supervisory Control And Data Acquisition</td>
</tr>
<tr>
<td>SDR</td>
<td>Sequential Decline Ratio</td>
</tr>
<tr>
<td>SKM</td>
<td>Sinclair Knight Merz</td>
</tr>
<tr>
<td>SQL</td>
<td>Structured Query Language</td>
</tr>
<tr>
<td>TCC</td>
<td>Total Channel Control</td>
</tr>
<tr>
<td>TDR</td>
<td>Total Decline Ratio</td>
</tr>
<tr>
<td>USQ</td>
<td>University of Southern Queensland</td>
</tr>
</tbody>
</table>
PUBLICATION ARISING FROM THIS RESEARCH

TABLE OF CONTENTS

Chapter 1: Introduction ..1

1.1. Background .. 2

1.2 Conveyance water losses in irrigation distribution system ... 3

1.3 Modernization of irrigation distribution systems .. 5
 1.3.1 Total channel control .. 7

1.4 Hypotheses .. 9

1.5 Objectives .. 10
 1.5.1 Objective 1: “Estimation of combined losses” .. 10
 1.5.2 Objective 2: “Estimation of seepage and leakage” ... 10
 1.5.3 Objective 3: “Investigation of factors affecting the estimation of seepage rate in each pool” .. 10
 1.5.4 Objective 4: “Development of a model capable of real time seepage assessment for the entire irrigation system” ... 11

1.6 Outcomes and significance ... 11
 1.6.1 Outcomes .. 11
 1.6.2 Significance .. 11

1.7 Structure of the Thesis .. 12

Chapter 2: Literature review of conveyance water loss measurement in irrigation channels ..13

2.1 Introduction .. 13

2.2. Seepage Losses .. 14
 2.2.1 Channel Leakage ... 14
 2.2.2 Factors Influencing Seepage .. 15

2.3 Quantifying Seepage Losses ... 16
2.3.1. Point measurement techniques .. 17
2.3.2. Direct measurement techniques .. 19
2.3.3. Geophysical techniques ... 24
2.3.4. Remote Sensing .. 26
2.3.5. Soil classification ... 27
2.3.6. Groundwater Assessment ... 28
2.3.7. Seepage predictive modelling .. 30

2.4. Evaporation .. 32
2.4.1. Pan factors .. 34
2.4.2. Mass balance ... 35
2.4.3. Energy budget ... 35
2.4.4. Bulk or mass transfer ... 36
2.4.5. Combination method ... 37

2.5. Previous combined losses studies in Coleambally and Goulburn-Murray 39
2.5.1. Goulburn Murray Irrigation District ... 39
2.5.2. Coleambally Irrigation District ... 49

2.6. Conclusion .. 56

Chapter 3: Coleambally Irrigation Area ... 59
3.1. Introduction .. 59
3.2. Climate .. 61
3.3. Soil Types ... 65
3.4. Geology and Topography ... 66
3.5. Crop production ... 66
3.6. TCC technology in CIA ... 67
3.7. Data provided from TCC technology in CIA 69
3.8. Conclusion .. 71

Chapter 4: Model Development .. 73
Chapter 5: Gauge, Pondage and Pool based Seepage rates ...107

5.1 Introduction ... 107
5.2 Coleambally database development .. 108
 5.2.1 Missing data ... 108
 5.2.2 Analysis of accepted samples ... 109
5.3 Seepage magnitude .. 110
 5.3.1 Seepage rate per gauge ... 111
 5.3.2 Seepage rate per pondage ... 115
 5.3.3 Seepage rate per pool ... 118
5.4 Conclusions ... 119

Chapter 6: Evaluation of factors affecting the seepage rates estimated using TCC data ..121

6.1 Introduction ... 121
6.2 Causal factors affecting the estimated seepage rate from TCC data 121
 6.2.1 Effect of rainfall ... 122
 6.2.2 Surface water elevation in the channel ... 127
 6.2.3 Seasonal effect ... 129
 6.2.4 Pondage condition duration .. 134
 6.2.5 Number of measured points ... 137
 6.2.6 Noise associated with measurement devices .. 138
 6.2.7 Possible leakage ... 142
 6.2.8 Possible sources of uncertainty .. 148
6.3 Interpretation of different seepage rates in any given pool ... 149
6.4 Discussion ... 154
6.5 Conclusion ... 156

Chapter 7: Identification of pools with high seepage rates and comparison of results with previous seepage estimates in CIA ...159
LIST OF FIGURES

Figure 1.1 Inefficient manually operated Dethridge Wheel meter outlets.................................7
Figure 1.2 Automated, integrated and remotely controlled systems with high efficiencies8
Figure 1.3 Real time control of flow measurements with automated gates8
Figure 1.4 Precision water measurement instrumentation combined with wireless
communications networks..9
Figure 2.1 Mechanism of seepage from channels (ANCID, 2003)..14
Figure 2.2 Seepage meter with submerged plastic bag (ANCID, 2003).................................19
Figure 2.3 Goulburn-Murray Irrigation District (Australian Gov., 2013)...............................40
Figure 2.4 Example of analysis of pondage test data (Poulton et al., 2007)............................44
Figure 2.5 Data cleansing due to short term fluctuations (Schulz, 2009)...............................45
Figure 2.6 Data cleansing due to outliers (Schulz, 2009)...46
Figure 2.7 Variable loss rates during a pondage test (Schulz, 2009)......................................46
Figure 2.8 An example period of total metered deliveries and offtake to the CG2 (Lang et al.,
2009)...47
Figure 2.9 An example period of net evaporation losses and total losses (Lang et al.,
2009)...48
Figure 2.10 Submerged and floating array results in Coleambally Main Canal (Allen, 2005;
SKM, 2006). ..52
Figure 2.11 The pondage location on the Main Canal, Winter 2005 (SKM, 2006).................52
Figure 2.12 Water level drop in ponded first 18 km of Main Channel (SKM, 2006).............53
Figure 2.13 Principal of Spot seepage measurement (SKM,2006)..54
Figure 2.14 Main Canal seepage test sites and the rates measured in preliminary observations (Allen, 2006) ... 55
Figure 2.15 Main Canal seepage test sites superimposed over a vertical EC section of sediment beneath the channel (Allen, 2006) ... 55
Figure 3.1 The Coleambally Irrigation Area in relation with Australia (Khan S, 2008)...60
Figure 3.2 Schematic map of supply and drainage systems in Coleambally (CICL, 2012)....61
Figure 3.3 Location of weather stations in the CIA (CICL, 2013)................................. 62
Figure 3.4 The average temperature and rainfall for CIA at AWS/1............................. 63
Figure 3.5 The average temperature and rainfall for CIA at AWS/2.............................. 63
Figure 3.6 The calculated evaporation rate for the CIA during 2009-2011 at AWS/1........64
Figure 3.7 The calculated evaporation rate for the CIA during 2009-2011 at AWS/2........64
Figure 3.8 Soil types of the Coleambally Irrigation Area (Watt, 2008) 65
Figure 3.9 Topography of the CIA (Watt, 2008).. 66
Figure 3.10 Dethridge Wheel meter outlets prior the installation of TCC technology in CIA.. 68
Figure 3.11 Replacement of new gates in different sizes instead of drop board checks and Detheridge wheels ...69
Figure 3.12 Schematic cross section of number of gates in sequential pools on a channel70
Figure 4.1 Algorithm applied in the computer model...74
Figure 4.2 Diagram of tables in Coleambally data base..77
Figure 4.3 Location of different main channels in CIA.. 83
Figure 4.4 Screen shot of main user interface for the computer model......................... 83
Figure 4.5 Screen shot of main user interface to report the analysis............................... 85
Figure 4.6 Screen shot of all zero flow periods for each of the gates incorporating Argoon1-2, 1-3 pool .. 87
Figure 4.7 Example of priority 1, a pool between Coly 6-10 & Coly 6-11......................... 93
Figure 4.8 Example of priority 2, a pool between Argoon 3-8 & farm outlet number 2005.. 93
Figure 4.9 Example of priority 3, a pool between Coly 5-2 & Coly 5-3............................ 94
Figure 4.10 Example of priority 4, a pool between Argoon 1-2, Argoon 1-3.........................95
Figure 4.11 Example of priority 5, a pool between Boona 7, Boona 7-1............................ 96
Figure 4.12 Proportion of accepted and rejected samples in 2010................................. 97
Figure 4.13 Statics of accepted samples... 97
Figure 4.14 Screen shot of criteria calculation for each of the gates............................... 99
Figure 4.15 Example of a pool classified in group 1... 100
Figure 4.16 Example of a pool classified in group 2... 100
Figure 4.17 Example of a pool classified in group 3... 101
Figure 4.18 Example of a pool classified in group 4... 102
Figure 4.19 Example of a pool classified in group 5... 102
Figure 5.1 Application of linear regression to estimate seepage rate at each gauge....... 110
Figure 5.2 Histogram of gauge based seepage rates for all pondage samples during 2009
irrigation season... 111
Figure 5.3 Histogram of gauge based seepage rates for all pondage samples during 2010
irrigation season... 111
Figure 5.4 Histogram of gauge based seepage rates for all pondage samples during 2011
irrigation season... 112
Figure 5.5 Histogram of gauge based seepage rates in 1st category during 2009-2011
irrigation seasons.. 113
Figure 5.6 Histogram of gauge based seepage rates in 2nd category during 2009-2011
irrigation seasons.. 113
Figure 5.7 Histogram of gauge based seepage rates in third category during 2009-2011 irrigation seasons..114

Figure 5.8 Applied algorithms in determination of LOC & NMPP variables for each pondage sample..116

Figure 5.9 Histogram of pondage seepage rates during 2009 irrigation season.......................... 116

Figure 5.10 Histogram of pondage seepage rates during 2010 irrigation season....................... 117

Figure 5.11 Histogram of pondage seepage rates during 2011 irrigation season....................... 117

Figure 6.1 Rainfall effect on corrected water elevation plot of BOONA 9-1 in BOONA 9, 9-1 pool during a pondage condition with total amount of 100 mm rainfall........................123

Figure 6.2 Rainfall effect on corrected water elevation plot of farm outlet 220/1 in ARGOON 3A, 220/1 pool during a pondage condition with total amount of 86 mm rainfall........... 123

Figure 6.3 Rainfall effect on corrected water elevation plot of BOONA 7-1 gauge in BOONA 7, 7-1 pool during a pondage condition with total amount of 47 mm rainfall in 2010/11 season.. 124

Figure 6.4 Rainfall effect on corrected water elevation plot of 27/2 farm outlet in COLY 7, 7-1 pool during a pondage condition with total amount of 47 mm rainfall in 2009/10 season.. 124

Figure 6.5 The estimated seepage rate not affected by the existence of rainfall due to low amount of 14 mm rainfall during a pondage condition on ARGOON 3-8, 2005/1 pool in 2009/10 season.. 125

Figure 6.6 The estimated seepage rate not affected by the existence of rainfall due to low amount of 5 mm rainfall during a pondage condition on ARGOON 3-8, 2005/1 pool in 2009/10 season.. 125

Figure 6.7 The estimated seepage rate not affected by the existence of 97 mm rainfall due to long duration of a pondage condition on TUBBO 8, 9 pool in 2010/11 season............. 126
Figure 6.8 The estimated seepage rate not affected by the existence of 90 mm rainfall due to long duration of a pondage condition on BUNDURE 8-OT/ 8-1 pool in 2011/12 season... 126

Figure 6.9 Initial water elevation effect on the estimated seepage rate of 640/1 farm outlet in BUNDURE 3-11, 3-12 pool during two pondage conditions in 2010/11 season............... 127

Figure 6.10 Initial water elevation effect on the estimated seepage rate of BUNDURE 7-1 gauge in BUNDURE 7OT, 7-1 pool during two pondage conditions in 2010/11 season..... 128

Figure 6.11 Seasonal effect on the estimated seepage rate of two pondage conditions in BUNDURE 5-4, 5-5 during the initial and the middle periods of 2010/11 irrigation season.. 130

Figure 6.12 Seasonal effect on the estimated seepage rate of two pondage conditions in TUBBO 7, 8 pool during the initial and the middle periods of 2010 irrigation season 131

Figure 6.13 Seasonal effect on the estimated seepage rates in three pondage conditions occurred in TUBBO 6, 7 pool during the initial, middle and the end periods of 2010/11 irrigation season.. 132

Figure 6.14 Seasonal effect on the estimated seepage rate of two pondage conditions in BUNDURE 3A O/T, BUNDURE 3A-1 pool during the middle and towards the end period of 2009/10 irrigation season.. 133

Figure 6.15 Duration effect on the estimated seepage rate of two pondage conditions in ARGOON 3-8, 2005/1 pool in 2010/11 irrigation season................................. 134

Figure 6.16 The effect of pondage duration on the estimated seepage rate of two pondage conditions in BUNDURE 4-13, ESC 4 pool during October of 2009/10 irrigation season.. 136

Figure 6.17 Water elevation measurements of COLY 7-1 gauge covering less duration compare to original pondage period with small number of measured points............... 137

Figure 6.18 Water elevation measurements of TUBBO 4 gauge covering less duration compare to original pondage period with reasonable number of measured points.......... 138
Figure 6.19 Noise associated with water elevation measurements of BOONA 7 in BOONA 8, 9 pool during a pondage condition without any rainfall... 139

Figure 6.20 Noise associated with water elevation measurements of COLY 5-1 in COLY 5, 5-1 pool during a pondage condition without any rainfall...139

Figure 6.21 Noise associated with water elevation measurements of 2008/1 farm outlet in YAMMA 4-7, ESC 4 pool during a pondage condition without any rainfall in 2009/10 season...140

Figure 6.22 Noise associated with water elevation measurements of 182/1 farm outlet in YAMMA 1, 2 pool during a pondage condition without any rainfall in 2009/10 season.....141

Figure 6.23 Noise associated with continuous increase in measured water elevations...........141

Figure 6.24 Noise associated with continuous increase in measured water elevations...........142

Figure 6.25 Possible leakage identified at BUNDURE 7-2 gauge during a pondage condition on BUNDURE 7-1, 7-2 pool in 2009/10 season...144

Figure 6.26 The estimated seepage rate using the polynomial trend line at different water elevations at BUNDURE 7-2 gauge...145

Figure 6.27 Linear variation of the estimated seepage rate using the polynomial trend line against time..145

Figure 6.28 Possible leakage identified at TUBBO-2 gauge during a pondage condition on TUBBO 1, 2 pool in 2011/12 season...146

Figure 6.29 Possible leakage identified at 591/2 farm outlet during a pondage condition on BUNDURE MAIN-13, 14 pool in 2009/10 season...147

Figure 6.30 The estimated seepage rate using the polynomial trend line at different water elevations at 592/1 farm outlet..147

Figure 6.31 Variations of the estimated seepage rate at 591/2 farm outlet using the polynomial trend line at different times...148
Figure 6.32 Corrected water elevation plots of TUBBO 11 gauge during 3 pondage conditions on TUBBO 10, 11 pool, occurred at higher water elevations in the channel (Appendix C)..150

Figure 6.33 Corrected water elevation plots of 2026/1 farm outlet during 3 pondage conditions on TUBBO 4OT, 2026 pool, occurred at higher water elevations in the channel (Appendix C)..152

Figure 6.34 Evaluation of corrected water elevation plots of 2026/1 farm outlet in TUBBO 4OT, 2026 POOL during longer pondage conditions at lower water elevations in the channel to identify possible leakage (Appendix C)..153

Figure 7.1 Application of the averaged pool estimate and the selected pondage rate to identify pools with high loss rates require remediation...160
LIST OF TABLES

Table 2.1 Levels of efficiency and losses in the Goulburn-Murray irrigation 1971 (Robinson, 1971)...40
Table 2.2 Sample results of seepage results (Smith, 1982)...41
Table 2.3 Components of unaccounted for water in the Goulburn-Murray Water irrigation System from 1989/90 to 1998/99 (SKM, 2000, SKM, 2006)..42
Table 2.4 Estimation of leakage and seepage – Langham Rd pool RN49-50 (Poulton et al., 2007)...44
Table 2.5 Estimates of un-metered use and losses to evaporation, seepage and leakage for CG2 (Lang et al., 2009)..48
Table 2.6 Accounted losses and water savings in the on-farm and near farm zones (Pratt Water, 2004)...50
Table 2.7 Accounted losses and water savings (GL/yr) (CSIRO, 2005)..50
Table 2.8 Summary of seepage investigations and treatments since 1993/94 (CICL, 2008).51
Table 2.9 Priorities of hotspot channels in Coleambally (Allen, 2006) ...54
Table 2.10 Summary of total amount of seepage in each priority (Allen, 2006)56
Table 3.1 The area and the proportion of production for the highest producing crops in the CIA (CICL, 2006)...67
Table 4.1 Main channel table...77
Table 4.2 AWS table...78
Table 4.3 Sample of part of Gate table..78
Table 4.4 Sample of part of Rainfall table..79
Table 4.5 Sample of part of Evaporation table..80
Table 4.6 Sample of part of Pool table...80
Table 4.7 Sample of part of Pool details table ... 81
Table 4.8 Sample of part of Gate flow info table .. 81
Table 4.9 Sample of part of Gate elevation info table .. 82
Table 4.10 Zero flow periods for pool ARGOON 1-2, ARGOON 1-3 85
Table 4.11 Water elevation records selection for pondage3 of ARGOON 1-2, ARGOON 1-3
pool ... 86
Table 4.12 Number of flow and water elevation measurement records for each gate during
possible pondage conditions ... 86
Table 4.13 Distribution of main channels for usage of AWS data 88
Table 4.14 Accumulative values of evaporation and rainfall from AWS2 database 89
Table 4.15 Calculated evaporation and rainfall value for each of the gates and farm outlets in
ARGOON 1-2, ARGOON 1-3 pool ... 89
Table 4.16 Corrected water elevation data of 3rd occured pondage in ARGOON 1-2, ARGOON 1-3
pool .. 90
Table 4.17 Summary of missing data for 2010-2011 data .. 91
Table 4.18 Changes in total number of pondage conditions for 2010 season after importing
the missing data .. 92
Table 4.19 Distribution of accepted samples in different main reaches 103
Table 4.20 Model output for all occurred pondage samples on pool ARGOON 1-2, 1-3 in
2010 irrigation season .. 105
Table 5.1 Summary of missing data for 2009-2011 ... 109
Table 5.2 Changes in total number of pondage conditions after importing the missing data of
all three seasons .. 109
Table 5.3 Summary of accepted sample analysis for 2009-2011 data 110
Table 5.4 Summary of median values of estimated seepage rates during 2009-2011 118
Table 6.1 Distribution of months in different periods of each irrigation season............129
Table 6.2 Identified pondage condition with possible leakage.................................143
Table 6.3 General characteristics of all pondage conditions on TUBBO 10, 11 pool during 2009/10 season...149
Table 6.4 General characteristics of all pondage conditions on TUBBO 4OT, 2026 pool during 2011/12 season...151
Table 7.1 Pools with high water loss grouped as category 1..162
Table 7.2 Pools with high water loss grouped as category 2..164
Table 7.3 Pools with high water loss grouped as category 3..166
Table 7.4 Pools with high water loss grouped as category 4..167
Table 7.5 Averaged seepage rates for all pools and estimated operational losses in each of the main channels during 3 irrigation seasons...168
Table 7.6 Total annual water loss due to seepage for the entire CIA during each season...169
Table 7.7 Comparison of total annual water loss calculated from TCC data with previous seepage studies..169
Table 7.8 Seepage estimates for each pool containing hotspots identified as priority 1 by Allen (2006)..171
Table 7.9 Seepage estimates for each pool containing hotspots identified as priority 3 by Allen (2006)..173
Table 7.10 Seepage estimates for each pool containing hotspots identified as priority 3 by Allen (2006)...175
Table 7.11 Seepage estimates for each pool containing hotspots identified as priority 4 by Allen (2006)..176
Table 7.12 Seepage estimates for each pool containing hotspots identified as priority 5 by Allen (2006)...177
Table B.1 ARGOON Gate table...234
Table B.2 BOONA Gate table...235
Table B.3 BUNDURE Gate table..236
Table B.4 COLY Gate table..237
Table B.5 MAIN CANAL Gate table..239
Table B.6 TUBBO Gate table..240
Table B.7 YAMMA Gate table..240
Table B.8 Pool table of ARGOON main channel...242
Table B.9 Pool table of BOONA main channel...242
Table B.10 Pool table of BUNDURE main channel..242
Table B.11 Pool table of COLY main channel..243
Table B.12 Pool table of MAIN CANAL..243
Table B.13 Pool table of TUBBO main channel...244
Table B.14 Pool table of YAMMA main channel...244
Table B.15 Pool details table of ARGOON main channel..245
Table B.16 Pool details table of BOONA main channel..246
Table B.17 Pool details table of BUNDURE main channel..249
Table B.18 Pool details table of COLY main channel..252
Table B.19 Pool details table of MAIN CANAL...257
Table B.20 Pool details table of TUBBO main channel..259
Table B.21 Pool details table of YAMMA main channel..261
Table C.1 Detailed results of all gauges on ARGOON main channel during 2009/10 season...266
Table C.2 Details of Pondage conditions in different pools of ARGOON main channel during 2009/10 season...267
Table C.3 Details of Pondage conditions in different pools of BOONA main channel during 2009/10 season...268
Table C.4 Details of Pondage conditions in different pools of BUNDURE main channel (BUNDURE 1) during 2009/10 season...270
Table C.5 Details of Pondage conditions in different pools of BUNDURE main channel (BUNDURE 3) during 2009/10 season...270
Table C.6 Details of Pondage conditions in different pools of BUNDURE main channel (BUNDURE 4) during 2009/10 season...272
Table C.7 Details of Pondage conditions in different pools of BUNDURE main channel (BUNDURE 5) during 2009/10 season...273
Table C.8 Details of Pondage conditions in different pools of BUNDURE main channel (BUNDURE 6) during 2009/10 season...274
Table C.9 Details of Pondage conditions in different pools of BUNDURE main channel (BUNDURE 7) during 2009/10 season...275
Table C.10 Details of Pondage conditions in different pools of BUNDURE main channel (BUNDURE 8) during 2009/10 season...275
Table C.11 Details of Pondage conditions in different pools of COLY main channel (COLY 2) during 2009/10 season...275
Table C.12 Details of Pondage conditions in different pools of COLY main channel (COLY 3) during 2009/10 season...276
Table C.13 Details of Pondage conditions in different pools of COLY main channel (COLY 4) during 2009/10 season...276
Table C.14 Details of Pondage conditions in different pools of COLY main channel (COLY 5) during 2009/10 season...277
Table C.15 Details of Pondage conditions in different pools of COLY main channel (COLY 6) during 2009/10 season...278
Table C.16 Details of Pondage conditions in different pools of COLY main channel (COLY 7) during 2009/10 season...280
Table C.17 Details of Pondage conditions in different pools of COLY main channel (COLY 8) during 2009/10 season...280
Table C.18 Details of Pondage conditions in different pools of COLY main channel (COLY 9) during 2009/10 season...281
Table C.19 Details of Pondage conditions in different pools of COLY main channel (COLY 10) during 2009/10 season...283
Table C.20 Details of Pondage conditions in different pools of COLY main channel (COLY 11) during 2009/10 season...283
Table C.21 Details of Pondage conditions in different pools of MAIN CANAL during 2009/10 season...284
Table C.22 Details of Pondage conditions in different pools of TUBBO main channel during 2009/10 season...286
Table C.23 Details of Pondage conditions in different pools of YAMMA main channel during 2009/10 season...287
Table D.1 Detailed results of BOONA 9-1 gauge in BOONA 9, 9-1 pool illustrated in Figure 6.1...292
Table D.2 Detailed results of farm outlet 220/1 in ARGOON 3A, 220/1 pool illustrated in Figure 6.2...292
Table D.3 Detailed results of BOONA 7-1 gauge in BOONA 7, 7-1 pool illustrated in Figure 6.3 .. 293
Table D.4 Detailed results of 27/2 farm outlet in COLY 7, 7-1 pool illustrated in Figure 6.4 .. 293
Table D.5 Detailed results of 2005/1 farm outlet in ARGOON 3-8, 2005/1 pool illustrated in Figure 6.5 293
Table D.6 Detailed results of 2005/1 farm outlet in ARGOON 3-8, 2005/1 pool illustrated in Figure 6.6 294
Table D.7 Detailed results of TUBBO-9 gauge in TUBBO 8, 9 pool illustrated in Figure 6.7 .. 294
Table D.8 Detailed results of BUNDURE 8-1 gauge in BUNDURE 8-OT/8-1 illustrated in Figure 6.8 295
Table D.9 Detailed results of 640/1 farm outlet during the shorter pondage condition illustrated in Figure 6.9 295
Table D.10 Detailed results of 640/1 farm outlet during the longer pondage condition illustrated in Figure 6.9 295
Table D.11 Detailed results of BUNDURE 7-1 gauge during the shorter pondage condition illustrated in Figure 6.10 297
Table D.12 Detailed results of BUNDURE 7-1 gauge during the longer pondage condition illustrated in Figure 6.10 297
Table D.13 Detailed results of BUNDURE 5-5 gauge during the shorter pondage condition illustrated in Figure 6.11 298
Table D.14 Detailed results of BUNDURE 5-5 gauge during the longer pondage condition illustrated in Figure 6.11 298
Table D.15 Detailed results of TUBBO-8 gauge in early August illustrated in Figure 6.12..300

Table D.16 Detailed results of TUBBO-8 gauge in mid October illustrated in Figure 6.12..301

Table D.17 Detailed results of 221/1 gauge in early July illustrated in Figure 6.13..............301

Table D.18 Detailed results of 221/1 gauge in mid Oct illustrated in Figure 6.13..............301

Table D.19 Detailed results of 221/1 gauge in late June illustrated in Figure 6.13..............301

Table D.20 Detailed results of BUNDURE 3A-1 gauge towards the end of 2009/10 season illustrated in Figure 6.14..302

Table D.21 Detailed results of BUNDURE 3A-1 gauge in the middle of 2009/10 season illustrated in Figure 6.14..304

Table D.22 Detailed results of 2005/1 farm outlet in late August of 2010/11 season illustrated in Figure 6.15..305

Table D.23 Detailed results of 2005/1 farm outlet in early Sep of 2010/11 season illustrated in Figure 6.15..305

Table D.24 Detailed results of 596/1 farm outlet in early Oct of 2009/10 season illustrated in Figure 6.16..306

Table D.25 Detailed results of 596/1 farm outlet in mid Oct of 2009/10 season illustrated in Figure 6.16................................... ...307

Table D.26 Detailed results of BOONA-7 gauge in BOONA 8, 9 pool illustrated in Figure 6.19..308

Table D.27 Detailed results of COLY 5-1 gauge in COLY 5, 5-1 pool illustrated in Figure 6.20..308

Table D.28 Detailed results of 2008/1 farm outlet in YAMMA 4-7, ESC YAMMA 4 pool illustrated in Figure 6.21..309
Table D.29 Detailed results of 182/1 farm outlet in YAMMA 1, 2 pool illustrated in Figure 6.22
...312
Table D.30 Detailed results of 2020/1 farm outlet in TUBBO 10, 11 pool illustrated in Figure 6.23
..313
Table D.31 Detailed results of YAMMA-2 gauge in YAMMA-1, 2 pool illustrated in Figure 6.24
..313
Table D.32 Detailed results of BUNDURE 7-2 gauge in BUNDURE 7-1, 7-2 pool illustrated in Figure 6.25, 26, 27...314
Table D.33 Detailed results of TUBBO-2 gauge in TUBBO-1, 2 pool illustrated in Figure 6.28
..316
Table D.34 Detailed results of 591/2 farm outlet in BUNDURE MAIN 13, 14 pool illustrated in Figure 6.29, 30, 31...317
Table D.35 Detailed results of TUBBO-11 gauge in TUBBO-10, 11 pool during the 3rd pondage condition illustrated in Figure 6.32..319
Table D.36 Detailed results of TUBBO-11 gauge in TUBBO-10, 11 pool during the last pondage condition illustrated in Figure 6.32..320
Table D.37 Detailed results of TUBBO-11 gauge in TUBBO-10, 11 pool during the 8th pondage condition illustrated in Figure 6.32..322
Table D.38 Detailed results of 2026/1 farm outlet in TUBBO 4OT, 2026 pool during the 7th pondage condition illustrated in Figure 6.33..322
Table D.39 Detailed results of 2026/1 farm outlet in TUBBO 4OT, 2026 pool during the 9th pondage condition illustrated in Figure 6.33..322
Table D.40 Detailed results of 2026/1 farm outlet in TUBBO 4OT, 2026 pool during the 1st pondage condition illustrated in Figure 6.33..323
Table D.41 Detailed results of 2026/1 farm outlet in TUBBO 4OT, 2026 pool during the 10th pondage condition illustrated in Figure 6.34
Table D.42 Detailed results of 2026/1 farm outlet in TUBBO 4OT, 2026 pool during the last pondage condition illustrated in Figure 6.34
Table E.1 Analysis of pool based seepage rates in ARGOON main channel
Table E.2 Analysis of pool based seepage rates in BOONA main channel
Table E.3 Analysis of pool based seepage rates in BUNDURE main channel
Table E.4 Analysis of pool based seepage rates in COLY main channel
Table E.5 Analysis of pool based seepage rates in MAIN CANAL
Table E.6 Analysis of pool based seepage rates in TUBBO main channel
Table E.7 Analysis of pool based seepage rates in YAMMA main channel
Table F.1 List of gates and farm outlets in different pools of ARGOON main channel
Table F.2 List of gates and farm outlets in different pools of BOONA main channel
Table F.3 List of gates and farm outlets in different pools of BUNDURE main channel
Table F.4 List of gates and farm outlets in different pools of COLY main channel
Table F.5 List of gates and farm outlets in different pools of MAIN CANAL
Table F.6 List of gates and farm outlets in different pools of TUBBO main channel
Table F.7 List of gates and farm outlets in different pools of YAMMA main channel
Table G.1 Linking the related pools to seepage hot spots of Allen, (2006) priority 1
Table G.2 Linking the related pools to seepage hot spots of Allen, (2006) priority 2
Table G.3 Linking the related pools to seepage hot spots of Allen, (2006) priority 3
Table G.4 Linking the related pools to seepage hot spots of Allen, (2006) priority 4
Table G.5 Linking the related pools to seepage hot spots of Allen, (2006) priority 5