Effect of Dispersed Clay and Soil Pore Size on the Hydraulic Conductivity of Soils Irrigated with Saline-Sodic water

A dissertation submitted by

Awedat Musbah Awedat

FOR THE AWARD OF

DOCTOR OF PHILOSOPHY

2014
I dedicate this work to my mother, father, siblings, wife and children

Awedat Musbah Awedat

USQ, Queensland, Australia, 22-2-2014
Abstract

A shortage of good quality water has led to the use of low quality, high saline-sodic water that was considered unsuitable for irrigation purposes in the past. Using such water can increase the potential of soil degradation, soil pore blockage and consequently reductions in soil saturated hydraulic conductivity (K_s). This can limit crop growth in the long term through the impacts on water and nutrient availability.

Most studies use reductions in soil K_s as an indicator of soil pore blockage when saline-sodic irrigation water is used. However, the use of saline-sodic irrigation water requires improved understanding of the cation exchange processes, soil structural degradation and the potential for soil pore blockage. In order to address this three laboratory trials were conducted to investigate the effect of soil pore size on soil cation exchange processes, dispersed clay movement and the mechanisms of soil pore blockage in relation to changes in soil K_s.

An initial study was conducted on two soils packed into soil cores at two different bulk densities (ρ_b) and leached with solutions containing varying concentrations of clay sediments. Measurements of soil K_s showed that increasing soil ρ_b and the concentration of clay sediment in the applied solution significantly increased the percentage of clay sediment retained within the soil columns. This in turn significantly decreased soil K_s particularly for compacted soils. Soil pore blockage occurred near the soil surface in compacted soils while soil pore blockage occurred at depth in soil packed at low ρ_b. This confirmed that soil pore size has a significant effect on dispersed clay movement and potential soil pore blockage.

The soil pore size distribution does not provide information about the mechanism of soil pore blockage. It was hypothesised that clay sediment migration and soil pore blockage occurs in saline-sodic soils and that the soil response will vary depending on clay mineralogy and the quality of irrigation water applied. These issues were addressed in later experiments that used saline-sodic irrigation water applied to soil with different properties. A resin impregnation method was also used to gain a better understanding of the mechanism of soil pore blockage.

Solutions with different sodium adsorption ratios (SAR) were used to understand the relationship between ion exchange and changes in soil K_s for three soils. A Red Ferrosol (RF), Grey Vertosol (GV) and Black Vertosol (BV) were packed into soil cores at two ρ_b (1 and 1.2 g cm$^{-3}$). The rate of ion exchange and reductions in soil K_s during leaching processes were found to be significantly higher in soils with higher proportions of soil macropores (> 30 µm) compared to those dominated by micropores (< 0.02 µm). Further, the correlation between the rate of ion exchange and changes in soil K_s was stronger for the RF soil compared to the BV soil. This indicated that dispersion was the main mechanism for soil K_s reductions in the RF soil while swelling contributed significantly to reductions in soil K_s for the BV soil. Even though the reductions in soil K_s were greater in lower ρ_b soils, they maintained significantly higher K_s values compared to compacted soil. The measurement of soil exchangeable cations after leaching with high SAR solutions showed a significant increase in soil ESP at the soil surface. The RF soil also reached chemical equilibrium earlier than the GV and the BV soils.

Applications of rain water to the soil cores post-leaching with saline-sodic water led to leaching of soluble cations and significant reductions in the electrical conductivity of the soil solution and soil K_s. These significant reductions were observed just after the first pore volume (PV) of leaching. However, the RF soil maintained higher K_s.
values compared to the GV and BV soil. Soils with lower ρ_b maintained higher K_s values and produced higher concentrations of dispersed clay in the leachate compared to compacted soils.

Image analyses of resin impregnated RF soil taken at depth from soil cores irrigated with good quality water (GQW) and saline-sodic irrigation water showed significant soil pore blockage after the application of saline-sodic water. This confirmed that dispersed clay migrated with infiltrated water. In compacted RF soil the soil pore blockage took place near the soil surface. For the BV soil, pore blockage occurred at and near the soil surface for $\rho_b = 1$ and 1.2 g cm$^{-3}$, respectively. Soil micropores were completely blocked while incomplete blockage was observed in the soil macropores.

After applying rain water to soil cores post-leaching with saline-sodic water significant pore blockage occurred at the soil surface in all treatments except for RF packed at low ρ_b where soil pore blockage was only observed in deeper soil layers.

Soil K_s was positively correlated with increasing the soil porosity and soil macroporosity while a strong negative correlation was found between K_s and soil microporosity. Small changes in soil porosity and soil macropores resulted in significant changes in K_s. This research has shown soil pore size has a significant effect on cation exchange processes, dispersed clay movement and the potential for soil pore blockage. However, this interaction differs between soils and is dependent on the dominant clay mineralogy.
Certification of Dissertation
I certify that the ideas, designs, experimental work, software, results, analyses and conclusions presented in this dissertation are entirely my own effort, except where otherwise indicated and acknowledged.
I further certify that the work is original and has not been previously submitted for assessment in any other course or institution, except where specifically stated.

Endorsement:

__ Date
Awedat Musbah Awedat, Candidate

__ Date
Professor Steven R Raine, Principal supervisor

__ Date
Dr John McLean Bennett, Co-Supervisor
Acknowledgments

First, I am very grateful to ALLAH for all his blessings and bounties, for giving me the ability to complete this work. Without him none of this work would have been possible.

I would honestly like to express my appreciations and thanks to my principal supervisor Professor Steven Raine for his guidance and suggestions, scientific and personal support. I greatly admire his capabilities of quick assessment, which greatly benefited me in writing and laboratory related issues.

I particularly acknowledge the major help provided by my co-supervisor Dr John Bennett in technical support and in improving my writing abilities. Special thanks to Dr Rabi Misra for his assistance at the beginning of this work. He was always ready to help.

I would also like to express my gratitude to the National Centre for Engineering in Agriculture (NCEA) at the University of Southern Queensland (USQ) and its staff for providing me the necessary equipment and technical support, particularly to Dr Alison McCarthy for her significant help with the image analysis software.

I also appreciate the help of Dr Tina Dalby and Dr Dio Antille for their great help in the proofreading and development of my capability in writing.

To the Libyan government and the University of Southern Queensland, I would like to express my gratitude for providing outstanding support to pursue my higher education.

Finally, I wish to express my thanks to my family and friends especially Abdurazag Almahdi, Hakeem Ksheem and Jamal Fernana for providing important moral support during my study.
Table of Contents

Abstract

Certification of Dissertation

Acknowledgments

Table of Contents

List of Tables

List of Figures

List of Symbols and Abbreviations

1 Chapter 1: Introduction
 1.1 Background
 1.2 Overview of research
 1.2.1 Research hypotheses
 1.2.2 Specific objectives of research
 1.3 Structure of dissertation

2 Chapter: Literature Review
 2.1 Introduction
 2.2 Soil structure
 2.2.1 Definition and importance
 2.2.2 Factors affecting soil structure
 2.3 Irrigation water quality
 2.3.1 Salinity hazard
 2.3.2 Sodium hazard
 2.3.3 Acidity and Alkalinity
 2.3.4 Specific ion toxicity
 2.3.5 Relationship between SAR and ESP
 2.4 Ion exchange processes
 2.5 Equilibrium prediction
 2.6 Impact of saline-sodic irrigation water on soil structure
 2.7 Relationships between salinity, sodicity and saturated hydraulic conductivity
 2.8 Clay swelling, dispersion and soil pore blockage
 2.9 Conclusion

3 Chapter 3: General Methodology
 3.1 Introduction
 3.2 Soil selection and sampling
 3.3 Methods
 3.3.1 Soil core preparation
Table of Contents

3.3.2 Solution preparation ... 22
3.3.3 Gravimetric water content measurement 22
3.3.4 Particle size analyses ... 22
3.3.5 Cation exchange capacity (CEC) .. 23
3.3.6 Soluble and exchangeable cation concentrations in soil 23
3.3.7 Soil impregnation and soil section preparation 24
3.3.8 Statistical analyses ... 24

4 Chapter 4: Influence of Suspended Clay Concentration in Infiltration Water on Pore Blockage and Saturated Hydraulic Conductivity ... 25
4.1 Introduction .. 25
4.2 Materials and methods ... 26
 4.2.1 Soil and core preparation .. 26
 4.2.2 Suspension preparation .. 26
 4.2.3 Hydraulic conductivity and sediment load measurement 27
 4.2.4 Soil-water retention ... 27
 4.2.5 Calculation of water-filled pore size .. 28
 4.2.6 Statistical analyses ... 28
4.3 Results ... 29
 4.3.1 Hydraulic conductivity of soil .. 29
 4.3.2 Sediment retained in soil columns .. 30
 4.3.3 Soil-water retention ... 31
 4.3.4 Pore size distribution ... 32
4.4 Discussion .. 33
 4.4.1 Effect of soil bulk density on retained sediment and saturated hydraulic conductivity .. 33
 4.4.2 Saturated hydraulic conductivity as a function of bulk density and sediment concentration in applied suspension 35
4.5 Conclusion .. 36

5 Chapter 5: Understanding the Relationship Between the Rate of Ion Exchange and Changes in Saturated Hydraulic Conductivity .. 37
5.1 Introduction .. 37
5.2 Material and methods ... 38
 5.2.1 Soil pore size measurement ... 38
 5.2.2 Saturated hydraulic conductivity, leaching and exchange cations ... 38
 5.2.3 Statistical analyses ... 39
5.3 Results ... 39
 5.3.1 Pore size distribution ... 39
 5.3.2 Electrical conductivity and saturated hydraulic conductivity of soils.. 40
Table of Contents

5.3.3 Cation concentration in the leachate ... 42
5.3.4 Exchangeable cations and ESP ... 47
5.4 Discussion .. 50
 5.4.1 Effect of ion exchange rate on soil Ks ... 50
 5.4.2 Effect of soil pore size distribution on soil chemical equilibrium 52
 5.4.3 EC as an indicator for chemical equilibrium and Ks steady state 53
5.5 Conclusion .. 54

6 Chapter 6: The Fate of Dispersed Clay and Interaction with Soil Pore Size 56
 6.1 Introduction .. 56
 6.2 Material and methods .. 57
 6.2.1 Preparation of soil cores and leachate analyses .. 57
 6.2.2 Soil cores impregnation and soil block preparation 57
 6.2.3 Determination of the number of images required to characterise porosity ... 58
 6.3 Results .. 59
 6.3.1 Saturated hydraulic conductivity (Ks) ... 59
 6.3.2 Leachate EC ... 61
 6.3.3 Dispersed clay in the leachate ... 62
 6.3.4 Cations in the leachate ... 62
 6.3.5 Exchangeable cations and soil ESP ... 67
 6.3.6 Changes in soil porosity ... 70
 6.3.7 Pore size distribution ... 74
 6.4 Discussion .. 77
 6.4.1 Effect of soil density and applied water quality on saturated hydraulic conductivity .. 77
 6.4.2 Factors affecting clay dispersion and soil pore blockage 78
 6.5 Conclusions .. 83

7 Chapter 7: General discussion and conclusions ... 84
 7.1 Dispersion and pore blockage ... 84
 7.2 Implications for management of saline-sodic water ... 86
 7.3 Implications for soil column studies for Ks as affected by water quality ... 87
 7.4 Recommendations for further research ... 88
 7.5 General conclusions ... 89

List of References ... 91
List of Tables

Table 3-1 Selected chemical and physical properties of the three soils 21
Table 3-2 Mass of salt dissolved in 20 L of distilled water to create the water quality
solutions .. 22
Table 4-1 selected properties of the sand ... 26
Table 5-1 Pore size distributions of RF, GV and BV soil (std deviation in brackets) 40
Table 5-2 Changes in exchangeable cations in the three soils packed at (1 and 1.2 g
cm-3) saturated for 24 h and treated with 10 PVs of (GQW, SAR 10 and SAR
50) at three depths .. 49
Table 5-3 ESP of the RF, GV and BV soils treated with GQW, SAR 10 or SAR 50
at three depths (0-1, 4-5 and 7-8 cm) .. 50
Table 6-1 Exchangeable cations in the three soils packed at 1 and 1.2 g cm-3 treated
with GQW, SAR 10 or SAR 50 after subsequently applying 4 PV of RW 69
Table 6-2 ESP of the RF, GV and BV soils treated with GQW, SAR 10 or SAR 50 at
three depths after applying RW .. 70
List of Figures

Figure 1-1 Distribution of Na+ and Ca2+ ions adsorbed on a clay surface (Hanson et al. 1999) ... 1
Figure 1-2 Outline of dissertation structure .. 5
Figure 2-1 Structural components of trimorphic silicate clays (Brady, 1990) 8
Figure 2-2 Effect of sodium and calcium ions on diffuse double layer and clay particle spacing source (Qureshi and Barrett-Lennard, 1998) 8
Figure 2-3 Relationships between SAR-ESP from Qadir and Schubert (2002) 12
Figure 2-4 Transport processes in solid-liquid soil reactions (Aharoni and Sparks 1991) ... 13
Figure 2-5 Measured and predicted EC breakthrough curves (Shackelford et al. 1999) ... 14
Figure 2-6 A simple 3-plane model to describe the arrangement of clay crystals in clay crystals in clay domain from Quirk (2001) .. 16
Figure 2-7 Combinations of salt concentration and SAR at which a 25% reduction in soil Ks occurred (McNeal and Coleman 1966) .. 17
Figure 2-8 Comparison of the TEC (20% reduction in soil Ks) curves for six soils where soil 1, 2 and 6 are Vertosol and 3, 4 and 5 are Chromosols (Bennett and Raine 2012) .. 17
Figure 3-1 Google image of University of Southern Queensland farm showing where the RF sample was taken ... 21
Figure 4-1 Schematic diagram of the soil column showing the position of soil sampling for soil-water retention measurement ... 28
Figure 4-2 Effect of sediment concentration and volume applied on Ks for a sand packed at 1.5 g cm-3 and the RF soil packed at the different bulk densities (1, 1.1, 1.15 and 1.2 g cm-3). Bars placed on the graph are LSD (α= 0.05) between treatments, Bars plotted on curves are LSD between drainage volumes. 29
Figure 4-3 Effect of sediment concentration and applied water on sediment retention in sand (ρb = 1.5 g cm-3) and Red Ferrosol (ρb = 1, 1.1, 1.15 and 1.2 g cm-3). Bars placed on the graph are LSD (α = 0.05) between treatments and bars plotted on curve are LSD between drainage volumes .. 31
Figure 4-4 The effect of sediment concentration, packing density and depth within soil column on soil-water retention functions for RF soil. Bars plotted on curve are LSD matric suctions .. 32
Figure 4-5 Fraction of pores drained of surface and subsurface samples for RF soil packed at 1 or 1.2 g cm-3 and treated with QGW, 5 or 20 g L-1 clay suspension. Bars placed on the graph are LSD (α = 0.05) between treatments. 33
Figure 4-6 Changes in Ks as a function of sediment concentration of applied solution (GQW, 5 and 20 g L-1) and soil bulk densities (1, 1.1 and 1.2 g cm-3)........ 35
Figure 5-1 Microscope images of horizontal cross-sectioned for RF, GV and BV soils packed at 1 and 1.2 g cm-3. .. 39
Figure 5-2 Changes in EC with drainage volume for three soils (RF, GV and BV) packed at two bulk densities (1 and 1.2 g cm-3) and treated with different water qualities (GQW, SAR 10 and SAR 50). Bars placed on the graph are LSD (α = 0.05) between treatments. Bars placed on the graph are LSD (α = 0.05) between treatments. Bars plotted on curve are LSD within treatments 41
Figure 5-3 Changes in Ks with drainage volume for three soils (RF, GV and BV) packed at two bulk densities (1 and 1.2 g cm-3) and treated with different water qualities (GQW, SAR 10 and SAR 50). Bars placed on the graph are LSD (α =
List of Figures

0.05) between treatments. Bars placed on the graph are LSD (α = 0.05) between treatments. Bars plotted on curve are LSD within treatments..........................42

Figure 5-4 Changes in Na+ concentration with drainage volume for the three soils (RF, GV and BV) packed at two bulk densities (1 and 1.2 g cm-3) and treated with different water qualities (GQW, SAR 10 and SAR 50). Bars placed on the graph are LSD (α = 0.05) between treatments. Bars plotted on curve are LSD within treatment...43

Figure 5-5 Changes in Ca2+ concentration with drainage volume for the three soils (RF, GV and BV) packed at two bulk densities (1 and 1.2 g cm-3) and treated with different water qualities (GQW, SAR 10 and SAR 50). Bars placed on the graph are LSD (α = 0.05) between treatments. Bars plotted on curve are LSD within treatments...44

Figure 5-6 Changes in Mg2+ concentration with drainage volume for the three soils (RF, GV and BV) packed at two bulk densities (1 and 1.2 g cm-3) and treated with different water qualities (GQW, SAR 10 and SAR 50). Bars placed on the graph are LSD (α = 0.05) between treatments. Bars plotted on curve are LSD within treatments...45

Figure 5-7 Changes in K+ concentration for the three soils (RF, GV and BV) packed at two bulk densities (1 and 1.2 g cm-3) and treated with different water qualities (GQW, SAR 10 and SAR 50). Bars placed on the graph are LSD (α = 0.05) between treatments. Bars plotted on curve are LSD within treatments...46

Figure 5-8 Cumulative extraction of Mg2+ and K+ with drainage from three soils (RF, GV and BV) packed at two bulk densities (1 and 1.2 g cm-3) and treated with GQW or SAR 50 solutions...48

Figure 5-9 Soil Ks (Right axis) along with Na, Mg and K concentration (Left axis) of the leachate from soil columns packed at two densities showing stages of ion exchange in different pore sizes...51

Figure 5-10 Relation between soil Ks and cumulative ion concentrations in the leachate of RF and BV soils packed at ρb (1 or 1.2 g cm-3) and treated with SAR 50 solution...51

Figure 5-11 Changes in Ks (left axis) and with EC (Right axis) during leaching of two soils (RF and BV) at different bulk density (1 and 1.2 g cm-3) and treated with SAR 50 solutions...54

Figure 6-1 Example image of soil surface showing soil pores (left image for RF and right image for BV) where green area represents soil pores and grey and black areas represent soil matrix...58

Figure 6-2 Example analysis screen using TBitmap software for a surface image of RF soil...58

Figure 6-3 Standard deviation between selected samples of soil images for RF and BV soils treated with GQW and SAR 50 treatments at depths of 0 and 4 cm..59

Figure 6-4 Ks of three clay soils (RF, GV and BV soils) packed at two bulk densities (1 and 1.2 g cm-3) and treated with RW after irrigation with different water qualities (GQW, SAR 10 and SAR 50). Bars on the graph are LSD (α = 0.05) between treatments and bars plotted on curve are LSD within treatments.60

Figure 6-5 Leachate EC (dS m-1) for three clay soils (RF, GV and BV) packed at two densities (1 and 1.2 g cm-3) and treated with different water qualities (GQW, SAR 10 and SAR 50) after applying RW. Bars placed on the graph are LSD (α = 0.05) between treatments. ...61

Figure 6-6 Cumulative dispersed clay concentrations in the leachate (g L-1) for three clay soils (RF, GV and BV soils) packed at two densities (1 and 1.2 g cm-3) and
List of Figures

treated with different water qualities (GQW, SAR 10, SAR 50) with pore volume after applying RW. Bars placed on the graph are LSD ($\alpha = 0.05$) between treatments and bars plotted on curve are LSD within treatments. 63

Figure 6-7 Na concentration in the leachate (g L$^{-1}$) from three clay soils (RF, GV and BV) packed at two densities (1 and 1.2 g cm$^{-3}$) and treatment with different water qualities (GQW, SAR 10, SAR 50) after applying RW. Bars on the graph are LSD ($\alpha = 0.05$) between treatments. ... 64

Figure 6-8 Ca concentration in the leachate (g L$^{-1}$) from three clay soils (RF, GV and BV soils) packed at two densities (1 and 1.2 g cm$^{-3}$) and treatment with different water qualities (GQW, SAR 10, SAR 50) after applying RW. Bars on the graph are LSD ($\alpha = 0.05$) between treatments. ... 65

Figure 6-9 Mg$^{2+}$ concentration in the leachate (g L$^{-1}$) from three clay soils (RF, GV and BV) packed at two densities (1 and 1.2 g cm$^{-3}$) and treatment with different water qualities (GQW, SAR 10, SAR 50) after applying RW. Bars on the graph are LSD ($\alpha = 0.05$) between treatments. ... 66

Figure 6-10 K concentration in the leachate (g L$^{-1}$) from three soils (RF, GV and BV) packed at two densities (1 and 1.2 g cm$^{-3}$) and treatment with different water qualities (GQW, SAR 10 and SAR 50) after applying RW. Bars on the graph are LSD ($\alpha = 0.05$) between treatments. ... 67

Figure 6-11 Selected images of surface soil blocks of RF soil packed at (1 g cm$^{-3}$) treated with GQW, SAR 10 and SAR 50 at different depths (0, 4 and 8 cm). .. 71

Figure 6-12 Effect of soil compaction on soil macropores between soil aggregates where green and yellow portions represent filled soil pores and red/brown portions represent soil particles... 79

Figure 6-13 Soil pore blockage within RF soil (1 g cm$^{-3}$) (A) after applying GQW and (B) treated with SAR 50 water where green colours represent soil pores and red/brown colours represent soil particles.. 80

Figure 6-14 Incomplete blockage of soil macropores for RF soil packed at 1 g cm$^{-3}$ and treated with SAR 50 water at soil surface and at 6 cm depth where green represents soil pores and red/brown colours represents soil particles................. 81

Figure 6-15 Incomplete blockage of soil macropores for RF soil packed at 1.2 g cm$^{-3}$ and treated with SAR 50 water at soil surface and at 2 cm depth where green represents soil pores and red/brown colours represents soil particles................. 81

Figure 6-16 Effect of swelling on soil pore-network of BV soil packed at 1 g cm$^{-3}$, (a) before treatment and (b) after treatment with GQW solution where green represents soil pores and black colours represents soil particles........................... 82

Figure 6-17 Example image of soil surface showing the effect of RW on RF and BV soil packed at 1.2 g cm$^{-3}$, after treatment with GQW and saline-sodic solutions. .. 83

Figure 7-1 Relationship between soil porosity, pore size and K_s .. 86
List of Symbols and Abbreviations

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>BV</td>
<td>Black Vertosol</td>
</tr>
<tr>
<td>CEC</td>
<td>Cation exchange capacity</td>
</tr>
<tr>
<td>DDL</td>
<td>Diffuse double layer</td>
</tr>
<tr>
<td>EC</td>
<td>Electrical conductivity</td>
</tr>
<tr>
<td>EC$_{iw}$</td>
<td>Electrical conductivity of irrigation water</td>
</tr>
<tr>
<td>ESP</td>
<td>Exchangeable sodium percentage</td>
</tr>
<tr>
<td>EXCa$^{2+}$</td>
<td>Exchangeable calcium</td>
</tr>
<tr>
<td>EXK$^+$</td>
<td>Exchangeable potassium</td>
</tr>
<tr>
<td>EXMg$^{2+}$</td>
<td>Exchangeable magnesium</td>
</tr>
<tr>
<td>EXNa$^+$</td>
<td>Exchangeable sodium</td>
</tr>
<tr>
<td>GQW</td>
<td>Good quality water</td>
</tr>
<tr>
<td>GV</td>
<td>Grey Vertosol</td>
</tr>
<tr>
<td>K_s</td>
<td>Saturated hydraulic conductivity</td>
</tr>
<tr>
<td>LSD</td>
<td>Least significant difference</td>
</tr>
<tr>
<td>PV</td>
<td>Pore volume</td>
</tr>
<tr>
<td>ρ_b</td>
<td>Bulk density</td>
</tr>
<tr>
<td>RF</td>
<td>Red Ferrosol</td>
</tr>
<tr>
<td>RSC</td>
<td>Residual sodium carbonate</td>
</tr>
<tr>
<td>SAR</td>
<td>Sodium adsorption ratio</td>
</tr>
<tr>
<td>SC</td>
<td>Sediment concentration</td>
</tr>
<tr>
<td>TDS</td>
<td>Total dissolved salts</td>
</tr>
<tr>
<td>TEC</td>
<td>Threshold electrolyte concentration</td>
</tr>
</tbody>
</table>