Measuring Strain Using Microwave Energy

A thesis submitted by

M. Trethewey

in fulfilment of the requirements of

Master of Engineering Research

Submitted: January, 2013
Abstract

The measurement of force (or weight) is required in a great diversity of industries and applications. The wide range of force levels, force characteristics and required data has driven the development of many different technologies to meet these needs. Most of these technologies depend on the force (or weight) deforming an elastic load bearing member, with some form of transducer to convert the strain in the member to an electrical quantity. The selection of this transducer will depend heavily on the particular application. The range of major technologies are briefly reviewed and their limitations noted.

The research set out in this dissertation investigated an original transducer system that uses microwave energy to measure the strain in a loaded member, with the member forming an integral part of the transducer. The basic design principle involves a pair of cavities in the elastic member, one only which is subject to deformation under load, while both cavities share a common temperature profile. The cavities are caused to resonate by a microwave feedback exciter, and the difference frequency between the cavities is extracted. This difference frequency will carry information related to the strain in the loaded cavity, whilst discriminating the common mode dimensional changes due to expansion and contraction with temperature change.

The design of a prototype transducer system focused on three areas:

The mechanical design of a transducer which produced strain in the loaded cavity in one co-ordinate direction only, so as not to produce complex deformation of the cavity. In principle this would ensure good linearity between the applied load and the microwave resonant frequency change in the cavity. Further, the second cavity was arranged to
experience no strain when the first cavity was loaded, but both cavities were adjacent in a single block of metal to ensure a common temperature profile. This member was designed to meet all the normal requirements, specifically low creep, high fatigue life and good stress-strain linearity within Hooke’s law, but also had to be suitable for manufacture in a material having low resistivity to maintain high Q values in the cavity resonators. The readily available Alloy-380 brass was chosen.

Electromagnetic analysis was undertaken for both shallow cylinder and shallow square box cavities, and the methods of electrically coupling into each. The resonant frequency sensitivity to cavity deformation in different co-ordinate directions and modes of resonance was also analysed. The advantages and disadvantages of each, and the choice of a suitable cavity resonant frequency is discussed.

Microwave system design comprised a loop feedback type microwave oscillator using MMIC (monolithic microwave integrated circuit) devices as the active components. The phase and magnitude data for coupling between the cavity probes is detailed, and an analysis of the design procedure for the printed circuit board microstrip layout is described. The difference frequency between the two cavities was extracted using a microwave mixer, and its design is detailed including the local oscillator and the intermediate frequency amplifier.

Two aspects of performance verification of the design were undertaken. Firstly, resonator performance measurements were undertaken and analysed with respect to the performance of the microwave equipment available. Measurements revealed the characteristics of the coupling probes in the cavity, the performance of signal output coupling alternatives between the cavity and the effects of circuit shielding. The principal results were:

- Phase noise = -50 dBC/Hz (relative to carrier) at 1 kHz offset from carrier
- 3 dB bandwidth = 2 kHz
- Drift = -0.0055% of carrier / 5 minutes
- Centre Frequency (carrier) = 8.23 GHz
Secondly, the performance of the complete prototype transducer was measured. Apparatus to load the transducer was designed and constructed, and the output difference frequency between the two cavities monitored during progressive loading and unloading, and independent repetitions provided an assessment of repeatability. The results yielded a sensitivity of 4.84 ± 0.05 and 4.79 ± 0.05 kHz/kg wt (respectively), at least 99.9% linearity, and nil detectable hysteresis (i.e. less than the limits imposed by the measuring equipment).

It is concluded that the technique is feasible and proof-of-concept has been achieved, but there remain significant challenges before the technique would be commercially viable. Recommendations for further work are also outlined.
Certification of Dissertation

I certify that the ideas, designs and experimental work, results, analyses and conclusions set out in this dissertation are entirely my own effort, except where otherwise indicated and acknowledged.

I further certify that the work is original and has not been previously submitted for assessment in any other course or institution, except where specifically stated.

M. Trethewey

Q9521089

Signature of Candidate

Date

ENDORSEMENT

Signature of Supervisor/s

Date
Acknowledgments

I wish to thank my three supervisors Assoc. Prof. Nigel Hancock, Dr. Andrew Maxwell and Assoc. Prof. Jim Ball for their untiring support and responses to my questions. Without their input this project would not have been possible. I would also like to make particular mention of Assoc. Prof. Jim Balls’ knowledge of microwaves and his willingness to participate in this project in his retirement.

Thanks to Prof. John Leis who provided a great deal of encouragement for me to commence this project and help in organising the initial meetings with academic staff and help with the research training training scheme scholarship.

I would also like to thank my beautiful wife Deanne for her support and understanding throughout this project.

M. Trethewey

University of Southern Queensland

January 2013
Contents

Abstract i

Acknowledgments v

List of Figures xii

List of Tables xx

Chapter 1 Introduction 1

1.1 Background .. 1

1.2 Hypothesis ... 1

1.3 Research Aims and Objectives 2

1.3.1 Mechanical Member 2

1.3.2 Cavity Exciter Circuit 3

1.3.3 Performance of Cavity Resonator 3

1.3.4 Construction of Complete Transducer 4

1.3.5 Performance of Transducer 4
Chapter 2 Literature Review

2.1 Introduction .. 6

2.2 Measuring Mechanical Strain using a Cavity Resonator 7

2.3 Force Measurement and Transduction Options 10

 2.3.1 Strain Gauges .. 10

 2.3.2 Mechanical Resonant Systems 12

 2.3.3 Hydraulic Systems 14

 2.3.4 Fibre Optic Systems 14

2.4 MMIC based Oscillators ... 15

2.5 Prior Methods of Realising a Cavity Oscillator 18

 2.5.1 Oscillator Theory .. 18

 2.5.2 Impedance Transformers 20

 2.5.3 Criteria for Cavity Oscillation 23

Chapter 3 Initial Design Concepts and Microwave Cavity Measurements

3.1 Introduction .. 27

3.2 Mechanical Designs .. 27

3.3 Investigation of Cavity Coupled Microwave Oscillators 32

3.4 Impedance of a trial Cavity and Probe 36
Chapter 4 Mechanical Design of Transducer

4.1 Introduction .. 41

4.2 Cavity Geometry ... 41
 4.2.1 Cylindrical Cavities 42
 4.2.2 Square Cavities 43

4.3 Choice of Materials for the Mechanical Element 45
 4.3.1 Change of Young’s Modulus with Temperature 49
 4.3.2 Stress Concentration, Fatigue and Creep 50
 4.3.3 Corrosion ... 52
 4.3.4 Electrical Resistance 53
 4.3.5 Selection of a Material 54

4.4 Transducer Mechanical Design and Analysis 55

4.5 Change in Mechanical Properties due to Modified Cover Plates 58

Chapter 5 Microwave Resonator Theory

5.1 Introduction .. 59

5.2 Cavity Shape ... 59

5.3 Choice of Resonator Frequency 60

5.4 Resonator Coupling 61

5.5 Resonator Modes and Sensitivity to Cavity Mechanical Deformation . 65
 5.5.1 Conclusion .. 68
Chapter 6 Microwave System Design

6.1 Introduction .. 69
6.2 Local Oscillator and R.F. Oscillator 69
6.3 Local Oscillator Amplifier 81
6.4 Microwave Mixer ... 82
6.5 Intermediate Frequency Amplifier 83

Chapter 7 Resonator Performance

7.1 Introduction .. 86
7.2 Microwave Test Equipment 86
 7.2.1 Suitability of Equipment 87
 7.2.2 Borrowed Equipment 89
7.3 S-parameter Measurements of the Cavity and Coupling Probes ... 89
7.4 S-Parameter Measurements of Test Probes and Cavity 90
7.5 Cavity Resonator Coupling 97
7.6 Cavity Resonator Output Signal Characteristics 99
 7.6.1 Phase Noise ... 99
 7.6.2 3dB Bandwidth ... 101
 7.6.3 Drift .. 102
 7.6.4 Circuit Shielding 103
 7.6.5 Zero Point Shift Problems 105
<table>
<thead>
<tr>
<th>Chapter 8</th>
<th>Prototype Transducer Performance Testing</th>
<th>117</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.1</td>
<td>Introduction</td>
<td>117</td>
</tr>
<tr>
<td>8.2</td>
<td>Output Frequency Change verses Applied Load</td>
<td>117</td>
</tr>
<tr>
<td>8.2.1</td>
<td>Objective</td>
<td>117</td>
</tr>
<tr>
<td>8.2.2</td>
<td>Apparatus</td>
<td>117</td>
</tr>
<tr>
<td>8.2.3</td>
<td>Method</td>
<td>120</td>
</tr>
<tr>
<td>8.2.4</td>
<td>Results</td>
<td>120</td>
</tr>
<tr>
<td>8.2.5</td>
<td>Repeatability Analysis 1 - Sensitivity</td>
<td>124</td>
</tr>
<tr>
<td>8.2.6</td>
<td>Repeatability Analysis 2 - No-load Frequency</td>
<td>127</td>
</tr>
<tr>
<td>8.2.7</td>
<td>Non-linearity Analysis</td>
<td>127</td>
</tr>
<tr>
<td>8.2.8</td>
<td>Hysteresis</td>
<td>128</td>
</tr>
<tr>
<td>8.2.9</td>
<td>Thermal Stability</td>
<td>130</td>
</tr>
<tr>
<td>8.3</td>
<td>Conclusions</td>
<td>130</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Chapter 9</th>
<th>Conclusions and Further Work</th>
<th>132</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.1</td>
<td>Conclusions</td>
<td>132</td>
</tr>
<tr>
<td>9.2</td>
<td>Further Work</td>
<td>133</td>
</tr>
<tr>
<td>9.2.1</td>
<td>Active Current Sources for MMIC Amplifiers</td>
<td>134</td>
</tr>
<tr>
<td>9.2.2</td>
<td>Attachment of Cavity Cover Plates</td>
<td>134</td>
</tr>
<tr>
<td>9.2.3</td>
<td>Cavity Cover Plate Deflection</td>
<td>134</td>
</tr>
<tr>
<td>9.2.4</td>
<td>Thermal Characteristics</td>
<td>135</td>
</tr>
</tbody>
</table>
CONTENTS

9.2.5 Response Time 136

References 137

Appendix A Data Sheets 140

A.1 MMIC Amplifier Data Sheet 141
A.2 Frequency Mixer Data Sheet 146
A.3 Inductor Data Sheet 149
A.4 380 Brass Data Sheet 152

Appendix B Pictures, Calibration Sheets and DataBook Extracts for Microwave Equipment 154

Appendix C Results from Applying Load to the Transducer 162

C.1 Introduction to this Appendix 163
C.2 Group A Test Results 164
C.3 Group B Test Results 184
C.4 Hysteresis Data 204
List of Figures

2.1 Conceptual layout of cavity with two orthogonal resonators - reproduced from Fig 8. Farley et al. (1991) 8

2.2 View of the Farley et al. (1991) cavity cross section under load - reproduced from Fig 5. .. 9

2.3 Setup of the Barth (2000) feedback oscillator clearly showing the two coupling ports into the cavity - reproduced from Fig 1(a). 16

2.4 Oscillator Equivalent Circuit: partly reproduced from Materka & Mizushina (1982) ... 19

2.5 Tapered Stripline Transformers reproduced from Womack (1962) 21

2.6 Variation of $F(\omega)$ with frequency for various values of the ratio $\frac{\delta}{f_c}$ reproduced from Womack (1962) 22

2.7 Two-port transistor oscillator circuit - reproduced from Kai Chang & Nair (2000) ... 23

3.1 Simple Cantilever Beam .. 28

3.2 Simple Beam with Two Cavities .. 29

3.3 Beam with Strain Control Holes ... 30
<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.4</td>
<td>Displacement of Beam with Strain Control Holes. The colour bar shows displacement in meters.</td>
</tr>
<tr>
<td>3.5</td>
<td>Displacement of Bending Type Beam under load</td>
</tr>
<tr>
<td>3.6</td>
<td>Compression Block Design Drawings</td>
</tr>
<tr>
<td>3.7</td>
<td>Compression Block Simulation Results</td>
</tr>
<tr>
<td>3.8</td>
<td>Picture of Cavities</td>
</tr>
<tr>
<td>3.9</td>
<td>Picture of the Cavity Probe and SMA Connector</td>
</tr>
<tr>
<td>3.10</td>
<td>Picture of the Probe and Cavity Cover Plate Assembly</td>
</tr>
<tr>
<td>3.11</td>
<td>Picture of the Complete Cavity Assembly</td>
</tr>
<tr>
<td>3.12</td>
<td>Comparison between Impedance Phase and Magnitude for 40 mm Cavity with 3 mm Probe</td>
</tr>
<tr>
<td>3.13</td>
<td>Comparison between Impedance Phase and Magnitude for 40 mm Cavity with 5 mm Probe</td>
</tr>
<tr>
<td>4.1</td>
<td>Drawing of Dual Cavity Mechanical Block</td>
</tr>
<tr>
<td>4.2</td>
<td>Constraints Applied to Dual Cavity Mechanical Block for Finite Element Analysis</td>
</tr>
<tr>
<td>4.3</td>
<td>Strain Induced in Dual Cavity Mechanical Block due to Applied Loads</td>
</tr>
<tr>
<td>4.4</td>
<td>S-N Diagrams reproduced from Oberg, Jones & Horton (1987). Diagram 1 shows the behavior of a material for which there is an endurance limit Sen. Diagram 2 shows the behavior of a material for which there is no endurance limit</td>
</tr>
<tr>
<td>4.5</td>
<td>Stress-concentration factor, K_t, for a grooved shaft in bending - reproduced from Oberg et al. (1987)</td>
</tr>
<tr>
<td>Figure</td>
<td>Description</td>
</tr>
<tr>
<td>--------</td>
<td>-------------</td>
</tr>
<tr>
<td>4.6</td>
<td>Stress-concentration factor, K_t, for a shaft, with a transverse hole, in torsion - reproduced from Oberg et al. (1987)</td>
</tr>
<tr>
<td>4.7</td>
<td>Modulus of Elasticity verses Temperature for Naval Brass : from Reed & Mikesell (1967)</td>
</tr>
<tr>
<td>5.1</td>
<td>Electric Field Distribution for two modes of resonance - reproduced from</td>
</tr>
<tr>
<td>5.2</td>
<td>Electric Field Probe Coupling Impedance - second cavity port is terminated to 50Ω by S-parameter test unit</td>
</tr>
<tr>
<td>6.1</td>
<td>Block Diagram of the Microwave Circuit</td>
</tr>
<tr>
<td>6.2</td>
<td>Block Diagram of the Oscillator Circuit where P_c is the phase change between the cavity coupling probes and P_m is the phase change across microstrip traces on the printed circuit board. The MMIC amplifier will also have a phase change P_a between its input and output (not shown in figure)</td>
</tr>
<tr>
<td>6.3</td>
<td>Plot of S_{21} phase shift and magnitude between coupling probes in cavity running in TE(2,1,0) mode</td>
</tr>
<tr>
<td>6.4</td>
<td>l_{eq2} Diagram reproduced from Visser (2007)</td>
</tr>
<tr>
<td>6.5</td>
<td>$l_{shortest}$ Diagram reproduced from Visser (2007)</td>
</tr>
<tr>
<td>6.6</td>
<td>Layout of Critical Phase Controlling Microstrip</td>
</tr>
<tr>
<td>6.7</td>
<td>Diagram of all phase changes around the oscillator loop. The total phase shift around the loop is shown as 360 degrees, and the microstrip phase change P_m is broken into two equal halves in the same way it is separated in the actual circuit. P_c is the phase change between the probes in the cavity and P_a is the phase change between the MMIC amplifier input and output.</td>
</tr>
<tr>
<td>Figure</td>
<td>Description</td>
</tr>
<tr>
<td>--------</td>
<td>-------------</td>
</tr>
<tr>
<td>6.8</td>
<td>Circuit Diagram of the Cavity Resonator</td>
</tr>
<tr>
<td>6.9</td>
<td>From left to right: R.F. Resonator, L.O. Amplifier in center with mixer at the top, and L.O. Resonator</td>
</tr>
<tr>
<td>7.1</td>
<td>Picture of Test Cavity and Cover Plate with SMA connector probes shown</td>
</tr>
<tr>
<td>7.2</td>
<td>Picture of Test Cavity with Cover Plate fitted and SMA connectors visible</td>
</tr>
<tr>
<td>7.3</td>
<td>Picture of Front and Back of SMA connector shorted to measure electrical length of test setup</td>
</tr>
<tr>
<td>7.4</td>
<td>S_{11} measurement of cavity probe 1 with cavity probe 2 tied to 50 ohms</td>
</tr>
<tr>
<td>7.5</td>
<td>S_{22} measurement of cavity probe 2 with cavity probe 1 tied to 50 ohms</td>
</tr>
<tr>
<td>7.6</td>
<td>Plot of Phase shift between cavity probe 1 and 2 verses frequency</td>
</tr>
<tr>
<td>7.7</td>
<td>Plot of coupling between cavity probe 1 and 2 verses frequency</td>
</tr>
<tr>
<td>7.8</td>
<td>Circuit Diagram of the Transducer</td>
</tr>
<tr>
<td>7.9</td>
<td>Connection of the Cavity Oscillator to the HP8565A Spectrum Analyser</td>
</tr>
<tr>
<td>7.10</td>
<td>A Pair of Spectrum Measurements of Cavity Resonator Output at 1 kHz Resolution Bandwidth and 2 kHz frequency span per division</td>
</tr>
<tr>
<td>7.11</td>
<td>Spectrum Measurement of Cavity Resonator Output at 1 kHz Bandwidth and 10 kHz frequency span per division</td>
</tr>
<tr>
<td>7.12</td>
<td>Spectrum Measurement of Cavity Resonator Output at 1 kHz Bandwidth and 2 kHz frequency span per division with an approximate overlay of the average signal</td>
</tr>
<tr>
<td>7.13</td>
<td>Picture of Plastic Shielding Assembly</td>
</tr>
<tr>
<td>7.14</td>
<td>Picture of Silver Plated Brass Cavity Block</td>
</tr>
</tbody>
</table>
LIST OF FIGURES

B.7 Picture of HP8510C calibration standards and connectors 161

C.1 Result A1 Laboratory Table . 164
C.2 Result A1 Graph . 165
C.3 Result A2 Laboratory Table . 166
C.4 Result A2 Graph . 167
C.5 Result A3 Laboratory Table . 168
C.6 Result A3 Graph . 169
C.7 Result A4 Laboratory Table . 170
C.8 Result A4 Graph . 171
C.9 Result A5 Laboratory Table . 172
C.10 Result A5 Graph . 173
C.11 Result A6 Laboratory Table . 174
C.12 Result A6 Graph . 175
C.13 Result A7 Laboratory Table . 176
C.14 Result A7 Graph . 177
C.15 Result A8 Laboratory Table . 178
C.16 Result A8 Graph . 179
C.17 Result A9 Laboratory Table . 180
C.18 Result A9 Graph . 181
C.19 Result A10 Laboratory Table . 182
LIST OF FIGURES

C.20 Result A10 Graph .. 183

C.21 Result B1 Laboratory Table 184

C.22 Result B1 Graph ... 185

C.23 Result B2 Laboratory Table 186

C.24 Result B2 Graph ... 187

C.25 Result B3 Laboratory Table 188

C.26 Result B3 Graph ... 189

C.27 Result B4 Laboratory Table 190

C.28 Result B4 Graph ... 191

C.29 Result B5 Laboratory Table 192

C.30 Result B5 Graph ... 193

C.31 Result B6 Laboratory Table 194

C.32 Result B6 Graph ... 195

C.33 Result B7 Laboratory Table 196

C.34 Result B7 Graph ... 197

C.35 Result B8 Laboratory Table 198

C.36 Result B8 Graph ... 199

C.37 Result B9 Laboratory Table 200

C.38 Result B9 Graph ... 201

C.39 Result B10 Laboratory Table 202
LIST OF FIGURES

C.40 Result B10 Graph .. 203

C.41 Hysteresis Results Laboratory Table 204

C.42 Hysteresis Results Graph .. 205
List of Tables

4.1 Ratio of Strength at Elevated Temperature Compared to Strength at 21 °C expressed as a Percentage 49

7.1 Measured Signal Level for various Coupling Resistor Values 99

7.2 Cavity Resonator Phase Noise Levels 101

7.3 Drift of Cavity Resonator Frequency over Time 102

7.4 Drift of Cavity Resonator Frequency over Time 103

7.5 Drift of Transducer Intermediate Frequency over Time 104

8.1 Data Collated from Group A Test Results 123

8.2 Data Collated from Group B Test Results 123