An experimental study on reactivity controlled compression ignition engine fueled with biodiesel/natural gas

Gharehghani, Ayatallah and Hosseini, Reza and Mirsalim, Mostafa and Jazayeri, S. Ali and Yusaf, Talal (2015) An experimental study on reactivity controlled compression ignition engine fueled with biodiesel/natural gas. Energy, 89. pp. 558-567. ISSN 0360-5442


LTPCI (low temperature premixed compression ignition) strategies are capable of causing simultaneous reduction in NOx and PM (particulate matter) emissions and increment in HC (hydrocarbon) and CO (carbon monoxide) emission with more cyclic variation. In this study, the combustion characteristics, performance and exhaust emissions of the RCCI (reactivity controlled compression ignition) engine dual fueled CNG (compressed natural gas)/biodiesel were investigated experimentally at various load conditions. The results revealed that waste fish oil biodiesel as a high reactivity fuel in dual fuel mode led to a higher in-cylinder pressure with shorter heat release rate duration as compared to conventional combustion. CNG/biodiesel dual fuel was more stable with little cycle-to-cycle variations compared to CNG/diesel, especially for high engine loads. Also, the CNG/biodiesel dual fuel mode has about 1.6% more
gross thermal efficiency and 2% lower combustion loss as compared to the CNG/diesel mode, averaged on all engine loads. CO emission concentration for CNG/biodiesel mode reached the same level as conventional combustion for high engine load conditions and its UHC (unburned hydrocarbon) emission reduced to about 32.5% compared to CNG/diesel case, averaged on all engine loads. Even though NOx emission amount for CNG/biodiesel case was higher than CNG/diesel, it was still much lower than conventional combustion with diesel or biodiesel fuels.

Statistics for USQ ePrint 27779
Statistics for this ePrint Item
Item Type: Article (Commonwealth Reporting Category C)
Refereed: Yes
Item Status: Live Archive
Additional Information: © 2015 Elsevier Ltd. Permanent restricted access to published version due to publisher copyright policy.
Faculty/School / Institute/Centre: Current - Faculty of Health, Engineering and Sciences - School of Mechanical and Electrical Engineering
Date Deposited: 29 Oct 2015 00:33
Last Modified: 27 Jul 2016 00:52
Uncontrolled Keywords: waste; fish oil; biodiesel Compressed natural gas Dual-fuel CNG (compressed natural gas)/ biodiesel Low temperature combustion HCCI (homogeneous charge compression ignition)-like combustion
Fields of Research : 09 Engineering > 0913 Mechanical Engineering > 091305 Energy Generation, Conversion and Storage Engineering
Identification Number or DOI: 10.1016/

Actions (login required)

View Item Archive Repository Staff Only