DEGRADABILITY OF BAMBOO FIBRE REINFORCED POLYESTER COMPOSITES

A dissertation submitted by

Noor Azwa Zulkarnain

006 10 293 55

For the award of

Doctor of Philosophy

2014
Abstract

Fibre reinforced polymer composites made up of synthetic fibres such as glass and carbon have shown outstanding performance in civil engineering load bearing applications. Development in replacing these fibres with natural fibres from plants has recently gained much attention due to the promotion of green-technology. However, the current applications of natural fibre/polymer composites in civil engineering are mostly concentrated on non-load bearing indoor components due to their vulnerability to environmental attack. Their ease to biodegrade becomes a main challenge in the widespread use of these types of materials. In this study, fibre treatment through alkaliisation and the application of commercial weather protection coating are suggested to enhance outdoor performance of natural fibre/polymer composite. Bamboo fibre reinforced polyester composites are selected for the current work due to their potential in civil applications. The study is divided into two stages: optimisation of sodium hydroxide (NaOH) treatment on bamboo fibre/polyester composite and the degradability of bamboo fibre/polyester composite. The degradation study involves material exposure to heat, moisture and the combination of both heat and moisture to provide hygrothermal effect.

The test samples comprised of untreated fibre/polyester composite, treated fibre/polyester composite, coated fibre/polyester composite and neat polyester. All composite samples were fabricated using vacuum bagging process on randomly oriented bamboo fibres. To study the optimum fibre treatment using NaOH, bamboo fibres were treated with 0, 4, 6 and 8 wt. % NaOH. Through tensile testing of both fibre and composite, as well as interfacial shear strength study, it was revealed that alkali treatment results in improvement in strength of fibres and fibre/matrix adhesion up to 6 wt. % NaOH concentration due to the decrease in microfibril angle and rougher fibre surface for better interlocking with neat polyester. At higher NaOH concentrations, fibrils were found damaged causing deterioration in these properties. Thus, the optimum concentration of NaOH for bamboo fibre treatment is considered to be at 6%, with 181% and 22% of improvement in fibre tensile strength and interfacial shear strength, respectively. The coating product selected is an acrylic-based weather protection coat, commercially available for outdoor use and it is applied on the optimised NaOH treated composite. The study has shown that the coating provided improved mechanical properties of the composite up to 15.5% for tensile strength and 5.5% for stiffness at room temperature as well as added durability against heat and moisture below 80⁰C. Generally, the thermal degradation study involves the use of thermo gravimetric analysis (TGA), dynamic mechanical analysis (DMA) and thermo-mechanical test. From the TGA, it was found that alkali treated fibres decomposed at lower temperatures than the untreated fibres due to the reduction in thermal stability of the cellulosic component of the fibres. For the composites, the decomposition temperature decreased by approximately 7.7% with the addition of the thermally less stable bamboo fibres in the neat polyester, but an approximately 90% increase in charring was observed. The glass transition temperature (T_g) for the composites is approximately 120⁰C obtained through DMA. The visco-elastic properties of the composites were found to be better than neat polyester above T_g as the bamboo fibres restrict the molecular movements of the softened resin. Similar findings were observed through the thermo-mechanical test, which was conducted at 40, 80 and 120⁰C. As the exposure temperature approaches T_g, the strength of the composites, although reduced, becomes better than neat
polyester, with 331% higher for treated composite due to the presence of fibres which provide restriction to molecular movements of the resin. In comparison with the tensile behaviour of the composites at room temperature, the strength of the composites were found to improve up to 23% at 80⁰C, which through scanning electron microscopy (SEM) observations, attributed this to better fibre/matrix adhesion. With the immersion of samples in water, the changes in physical and mechanical properties were observed. Without the addition of fibres into the neat polyester, the resin sample showed better resistance to moisture, with less than 1% of moisture absorption observed in 60 days. The voids observed on alkali treated fibres have influenced the increment on moisture absorption of individual bamboo fibres. However, with better interlocking with neat polyester, the moisture gain and absorption rate of the composites were found to decrease with NaOH treatment, whereby 6% NaOH treated composite achieved 60% less moisture gain than untreated composite. The thickness swelling of the untreated composites showed comparable result with treated composites but a notable improvement was observed with the application of the coating layer, providing 40% additional barrier against swelling. However, the strength of moisture degraded treated and untreated composites were comparable at 22 MPa, both approximately 2% higher than dry samples. This is due to the plasticising effect by free water molecules which was advantageous to the strength of cellulose fibres and also to the increased in interfacial shear strength by fibre swelling which filled the voids at the fibre/matrix interface. With the influence of both moisture and thermal exposure, the Tg was found to decrease which was attributed to the hydrolytic depolymerisation of neat polyester whereby the entanglement between the ester links were cleaved by chemical reaction with water, reducing its Tg from 112⁰C to 103⁰C. The rate of absorption and swelling were higher in hygrothermal condition for all samples while the strength experienced a 13.6% reduction compared to immersion at room temperature. Through SEM, this was explained by the presence of microcracks on the resin and deterioration of fibre/matrix adhesion. NaOH treatment and coating layer did not play a major role on the moisture absorption and swelling behaviour of the composites in hygrothermal condition.

From this study, it can be concluded that alkali treatment of fibres has the potential to improve the resistance of bamboo fibre/polyester composites against the effects of heat and moisture, depending on how the degradation parameters alter the condition of the fibre/matrix interface. The presence of a good coating system may help increase the durability of the composite but it must be designed specifically for a certain exposure condition to ensure its effectiveness.
Certification of Dissertation

I certify that the ideas, designs and experimental work, results, analyses and conclusions set out in this thesis are entirely my own effort, except where otherwise indicated and acknowledged.

I further certify that the work is original and has not been previously submitted for assessment in any other course or institution, except where specifically stated.

Noor Azwa Zulkarnain
006 10 293 35

Signature of Candidate
Date

Endorsement

Signature of Principal Supervisor
Date

Signature of Associate Supervisor
Date
Acknowledgements

I would like to express my deepest gratitude to all those who were involved in the completion of this thesis. First and foremost, I would like to thank God Almighty for giving me this opportunity and the strength to endure all challenges throughout the completion of this project.

I am deeply indebted to my supervisor, Dr. Belal Yousif whose help, guidance, stimulating suggestions and encouragement had helped me in all the time of the research, experiments and in writing of this thesis. To my associate supervisor, Dr. Allan Manalo, a big thank you for your time and fruitful discussion on the development of the composite fabrication and testing methods which has formed the basis of this research. I would also like to extend my gratitude to my second associate supervisor, Assoc. Prof. Dr. Karu Karunasena for his suggestions and technical support in filling the gaps throughout this study.

To the members of the Centre of Excellence in Engineered Fibre Composites (CEEFC), I greatly appreciate your support, suggestion and friendship. Many thanks to Wayne Crowell, Martin Geach, Mohan Trada, Adrian Blockland and Dr. Francisco Cardona, whose administrative and technical support have made this research possible. The knowledge and experience that they have passed on to me are greatly appreciated.

To my husband, Hizam Shah, whose help and support throughout this project had lightened my burden and worries, and without him, all this might not be possible. A special thanks to him. Last but not least, I would like to thank my beloved parents and sons, whose love and encouragement had enabled me to complete this work. To those whom I failed to mention but have been a great part of this endeavour, thank you very much.
List of Publications

Journals

Azwa, Z. N., Yousif, B. F., Manalo, A. C., & Karunasena, W. (*In progress*). Physical and mechanical characteristics of bamboo fibre/polyester composites subjected to moisture and hygrothermal conditions.

Refereed Conference Proceedings

Contents

Abstract ... i
Certification of Dissertation ... iii
Acknowledgements ... iv
List of Publications ... v
Contents .. vi
List of Figures .. x
List of Tables .. xiv
List of Abbreviations .. xv

Chapter 1 : Introduction ... 1
 1.1 Introduction .. 1
 1.2 Objectives ... 3
 1.3 Project significance ... 3
 1.4 Dissertation organization .. 4

Chapter 2 : Literature Review ... 6
 2.1 Introduction .. 6
 2.2 Natural fibre reinforced polymer composites and their degradation 6
 2.2.1 The applications and drawbacks of natural fibre composites 6
 2.2.2 Compositions of natural fibres and its effects on degradation 7
 2.3 Moisture durability .. 11
 2.3.1 Effect of fibre content on moisture absorption ... 14
 2.3.2 Effect of surface treatment on moisture absorption .. 15
 2.3.3 Effect of degradation due to moisture on mechanical properties of composites .. 16
 2.4 Thermal resistance .. 18
 2.4.1 Thermal degradation of natural fibre composites ... 19
 2.4.2 Effect of surface treatment on thermal degradation .. 24
 2.4.3 Effects of fire retardants ... 24
 2.5 Effects of weathering on degradation ... 33
 2.5.1 Natural weathering .. 35
 2.5.2 Accelerated weathering .. 36
 2.5.3 Effect of moisture on weathering of composites .. 38
 2.5.4 Discolouration and chemistry changes of composites due to weathering 39
 2.5.5 Effect of surface treatment and additives on weathering of composites 41
 2.6 Chapter summary .. 44
 2.7 Future Developments ... 45
Chapter 3: Methodology ... 46
3.1 Introduction .. 46
3.2 Material selection and preparation ... 48
 3.2.1 Fibre preparation and treatment .. 48
 3.2.2 Neat polyester sample preparation 48
 3.2.3 Composite laminates preparation 49
 3.2.4 Coating of composite sample ... 50
3.3 Fibre characterization .. 51
 3.3.1 Morphology study .. 51
 3.3.2 Density measurement ... 51
 3.3.3 Single Fibre Tensile Test ... 51
3.4 Mechanical properties of composite ... 52
 3.4.1 Single Fibre Fragmentation Test .. 52
 3.4.2 Tensile test ... 53
 3.4.3 Morphology observation of fractured surface 54
3.5 Thermal decomposition experiments .. 54
 3.5.1 Thermo gravimetric analysis .. 56
 3.5.2 Dynamic mechanical analysis ... 56
 3.5.3 Thermo-mechanical test .. 57
3.6 Moisture degradation experiments ... 58
 3.6.1 Fibre moisture absorption study .. 59
 3.6.2 Moisture absorption of composites at room temperature 59
 3.6.3 Moisture absorption in hygrothermal condition 60

Chapter 4: Alkali Treatment Optimization on Bamboo Fibre/Polyester Composites ... 61
4.1 Introduction .. 61
4.2 Influence of fibre treatment on the structural properties of fibres 61
4.3 Influence of fibre treatment on the physical properties of fibres 64
 4.3.1 Visual inspection ... 64
 4.3.2 Diameter distribution ... 65
 4.3.3 Changes in density .. 68
4.4 Tensile properties of fibres ... 68
4.5 Morphology of fractured fibres ... 71
4.6 Comparison of bamboo fibre properties to other natural fibres 74
4.7 Interfacial properties of bamboo fibre/polyester composite 74
4.8 Tensile properties of bamboo fibre/polyester composite 77
 4.8.1 Stress-strain diagram ... 77
6.5.1 Thickness swelling behaviour .. 135
6.5.2 Volume expansion behaviour ... 143
6.6 Tensile properties of moisture degraded bamboo fibre/polyester composites ...
... 146
6.7 Glass transition temperature of moisture degraded bamboo fibre/polyester composite .. 151
 6.7.1 Effect of moisture absorption on the storage modulus, loss modulus and
damping with temperature ... 151
 6.7.2 Theoretical reduction of mechanical properties due to hygrothermal
effect ... 154
6.8 Morphology observation of moisture degraded samples 157
6.9 Chapter summary ... 163
Chapter 7 : Conclusions and Recommendations .. 165
 7.1 Major conclusions from the study .. 165
 7.2 Recommendations .. 167
References .. 169

Appendix A: Acrylic Coating Technical Data Sheet
Appendix B: Preliminary Study on the Thermal Degradation of Kenaf
Fibre/Epoxy Composite
List of Figures

Figure 1.1: Number of journals published on the degradability of synthetic and natural FRP composites due to moisture, thermal, fire and UV exposures2
Figure 1.2: Layout of the dissertation ...5
Figure 2.1: Subdivision of natural fibres based on origin, adapted from John and Thomas (2008) ...8
Figure 2.2: Structure of biofibre, adapted from John and Thomas (2008)8
Figure 2.3: Chemical composition of various natural fibres9
Figure 2.4: Cell wall polymers responsible for the properties of lignocellulosics11
Figure 2.5: (a) Fickian diffusion at room temperature, (b) Non-Fickian diffusion at elevated temperature, adapted from Dhakal et al. (2007)12
Figure 2.6: Free water and bound water in polymer matrix (Chen et al. 2009)13
Figure 2.7: Effect of water on fibre/matrix interface (Dhakal et al. 2007)14
Figure 2.8: Typical thermo gravimetric decomposition process of natural fibres21
Figure 2.9: Curve overlap in TG Analysis of natural fibre/polymer composite23
Figure 2.10: Fire retardant contamination on fibre surface (Ayrilmis et al. 2012) 29
Figure 2.11: Fire performance improvement using test method: Time to Sustain Ignition ..30
Figure 2.12: Fire performance improvement using test method: Flame Propagation Test ..31
Figure 2.13: Fire performance improvement using test method: Thermo gravimetric Analysis ..32
Figure 2.14: UV Degradation of natural fibre/polymer composite and its components ..34
Figure 2.15: L*a*b* colour space adapted from HunterLab (2008)40
Figure 3.1: Flowchart of research scope ..47
Figure 3.2: Preparation of neat polyester specimens48
Figure 3.3: Neat polyester specimen dimension ...49
Figure 3.5: Bamboo fibre/polyester composite specimen dimension50
Figure 3.4: Vacuum bagging process for composite preparation49
Figure 3.6: SEM of acrylic coating on bamboo fibre/polyester composite50
Figure 3.7: Test set-up for Single Fibre Tensile Test ..52
Figure 3.8: Test set-up for Single Fibre Fragmentation Test53
Figure 3.9: Tensile test setup with laser extensometer54
Figure 3.10: Thermo gravimetric analysis test set-up56
Figure 3.11: Dynamic mechanical analysis test setup57
Figure 3.12: Equipment setup for thermo-mechanical test58
Figure 4.1: Morphology of treated and untreated bamboo fibres62
Figure 4.2: Structure of bamboo from macro to nano level, adapted from Zou et al. (2009) ...63
Figure 4.3: Changes in appearance of bamboo fibres due to alkalisation65
Figure 4.4: Diameter of a bamboo fibre microfibril65
Figure 4.5: Average of fibre diameter for treated and untreated fibres66
Figure 4.6: Distributions of fibre diameters: (a) 0%, (b) 4%, (c) 6% and (d) 8% NaOH ..67
Figure 4.7: Schematic diagram of diameter change of a bamboo fibre due to alkalisation ...67
Figure 4.8: Density of bamboo fibres at different concentration of alkali treatment.68
Figure 4.1: DTG curves of raw and treated bamboo fibres
Figure 4.2: TGA curves of raw and treated bamboo fibres
Figure 4.3: DTA curves of raw and treated bamboo fibres

Figure 4.4: Temperature peaks from DTA curves of bamboo fibres and bamboo-polyester composites
Figure 4.5: TGA curves of bamboo fibre/polyester composites and neat polyester
Figure 4.6: Final weight after decomposition of bamboo fibres and bamboo fibre/polyester composites
Figure 4.7: Settlement of additives in neat polyester
Figure 4.8: DTA curves of bamboo fibre/polyester composites with MgOH2 additive

Figure 4.9: Stress-strain curves of bamboo fibres at different concentration of NaOH treatment
Figure 4.10: Tensile strength of bamboo fibres at different NaOH concentration
Figure 4.11: Elastic modulus of bamboo fibres at different NaOH concentration
Figure 4.12: SEM of fractured untreated fibres due to single fibre tensile test
Figure 4.13: SEM of fractured 4% NaOH treated fibres due to single fibre tensile test
Figure 4.14: SEM of fractured 6% NaOH treated fibres due to single fibre tensile test
Figure 4.15: SEM of fractured 8% NaOH treated fibres due to single fibre tensile test
Figure 4.16: Load-displacement curves of SFFT at different concentration of NaOH
Figure 4.17: Effect on alkalization on the interfacial shear strength of bamboo-polyester
Figure 4.18: Schematic diagram of fibre/matrix interface at different NaOH concentrations

Figure 4.19: Stress-strain curves for composites with 0wt.% NaOH treatment
Figure 4.20: Stress-strain curves for composites with 4wt.% NaOH treatment
Figure 4.21: Stress-strain curves for composites with 6wt.% NaOH treatment
Figure 4.22: Stress-strain curves for composites with 8wt.% NaOH treatment
Figure 4.23: Stress-strain curves for neat polyester
Figure 4.24: Tensile strength of specimens at different concentration of NaOH treatment
Figure 4.25: Elastic modulus of specimens at different concentration of NaOH treatment
Figure 4.26: Fractured surface of neat polyester and bamboo fibre/polyester composites
Figure 4.27: Morphologies of neat polyester and bamboo fibre/polyester composites

Figure 4.28: Fractured surface of untreated bamboo fibre/polyester composites
Figure 4.29: Fractured surface of 4% NaOH treated bamboo fibre/polyester composites
Figure 4.30: Fractured surface of 6% NaOH treated bamboo fibre/polyester composites
Figure 4.31: Fractured surface of 8% NaOH treated bamboo fibre/polyester composites

Figure 5.1: Tensile strength of coated composite in comparison with other samples
Figure 6.26: Comparison of experimental and theoretical elastic modulus of hygrothermally aged samples...157
Figure 6.27: Morphology of non-loaded moisture degraded composites159
Figure 6.28: Morphology of tensile fractured surfaces of moisture degraded samples ...162
List of Tables

Table 2.1: Three main stages of weight loss of natural fibres .. 22
Table 2.2: Fire retardants and their mechanism of flame retardation 26
Table 2.3: Composite treatment for colour stability ... 42
Table 3.1: Type of samples ... 51
Table 4.1: Comparison of several characteristics of untreated bamboo fibres along with other natural fibres .. 74
Table 4.2: Theoretical modulus of elasticity of bamboo fibre/polyester composites 81
Table 5.1: Thermal decomposition of bamboo fibres from TGA 89
Table 5.2: Thermal decomposition of bamboo fibre/polyester composites and neat polyester from TGA .. 91
Table 5.3: Concentration of thermal stabilizer and UV absorber for optimization study .. 96
Table 5.4: T_g of neat polyester and bamboo fibre/polyester composites 108
Table 5.5: T_g values for various polymers and polymer composites obtained through DMA .. 109
Table 6.1: Hygroscopic properties of bamboo/polyester composites 134
Table 6.2: Measured TS and predicted K_{SR} for bamboo fibre/polyester composites ... 139
Table 6.3: The relationship between thickness swelling and moisture absorption of bamboo fibre/polyester composites .. 140
Table 6.4: Dilatational (volumetric) strain due to moisture absorption 145
Table 6.5: Visco-elastic properties of dry and wet samples 154
Table 6.6: Glass transition temperature (T_g) of dry and wet samples 154
Table 6.7: Theoretical glass transition temperature at wet condition 155
Table 6.8: Theoretical tensile properties of moisture absorbed samples 156
List of Abbreviations

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>$Al(OH)_3$</td>
<td>Aluminium hydroxide</td>
</tr>
<tr>
<td>AO</td>
<td>Antioxidants</td>
</tr>
<tr>
<td>APP</td>
<td>Ammonium polyphosphate</td>
</tr>
<tr>
<td>ASTM</td>
<td>American Society for Testing and Materials</td>
</tr>
<tr>
<td>BPC-0</td>
<td>0% $NaOH$ treated bamboo fibre/polyester composite</td>
</tr>
<tr>
<td>BPC-4</td>
<td>4% $NaOH$ treated bamboo fibre/polyester composite</td>
</tr>
<tr>
<td>BPC-6</td>
<td>6% $NaOH$ treated bamboo fibre/polyester composite</td>
</tr>
<tr>
<td>BPC-6C</td>
<td>Coated BPC-6</td>
</tr>
<tr>
<td>BPC-8</td>
<td>8% $NaOH$ treated bamboo fibre/polyester composite</td>
</tr>
<tr>
<td>CO</td>
<td>Carbon monoxide</td>
</tr>
<tr>
<td>CO_2</td>
<td>Carbon dioxide</td>
</tr>
<tr>
<td>DAP</td>
<td>Diammonium phosphate</td>
</tr>
<tr>
<td>DMA</td>
<td>Dynamic mechanical analysis</td>
</tr>
<tr>
<td>DTA</td>
<td>Differential thermal analysis</td>
</tr>
<tr>
<td>DTG</td>
<td>Derivative thermo gravimetric</td>
</tr>
<tr>
<td>FR</td>
<td>Fire retardant</td>
</tr>
<tr>
<td>FRC</td>
<td>Fibre reinforced cement</td>
</tr>
<tr>
<td>FRP</td>
<td>Fibre reinforced polymer</td>
</tr>
<tr>
<td>FTIR</td>
<td>Fourier transform infrared</td>
</tr>
<tr>
<td>H_2O</td>
<td>Water</td>
</tr>
<tr>
<td>HALS</td>
<td>Hindered amine light stabilizers</td>
</tr>
<tr>
<td>HDPE</td>
<td>High-density polyethylene</td>
</tr>
<tr>
<td>HIPS</td>
<td>High impact polystyrene</td>
</tr>
<tr>
<td>HRR</td>
<td>Heat release rate</td>
</tr>
<tr>
<td>IFSS</td>
<td>Interfacial shear strength</td>
</tr>
<tr>
<td>KOH</td>
<td>Potassium hydroxide</td>
</tr>
<tr>
<td>KSR</td>
<td>Swelling rate parameter</td>
</tr>
<tr>
<td>LDI</td>
<td>Lysine-based diisocyanate</td>
</tr>
<tr>
<td>LLDPE</td>
<td>Linear low density polyethylene</td>
</tr>
<tr>
<td>LLG</td>
<td>Limited life geotextiles</td>
</tr>
<tr>
<td>LOI</td>
<td>Limited oxygen index</td>
</tr>
<tr>
<td>MAPE</td>
<td>Maleic anhydride</td>
</tr>
<tr>
<td>MAPP</td>
<td>Maleic anhydride polypropylene</td>
</tr>
<tr>
<td>$Mg(OH)_2$</td>
<td>Magnesium hydroxide</td>
</tr>
<tr>
<td>MLR</td>
<td>Mass loss rate</td>
</tr>
<tr>
<td>MPS</td>
<td>Methacryloxyethyltrimethoxy silane</td>
</tr>
<tr>
<td>MST</td>
<td>Moisture saturation time</td>
</tr>
<tr>
<td>MSW</td>
<td>Municipal solid waste</td>
</tr>
<tr>
<td>NaOH</td>
<td>Sodium hydroxide</td>
</tr>
<tr>
<td>NP</td>
<td>Neat polyester</td>
</tr>
<tr>
<td>PBS</td>
<td>Poly-butylene succinate</td>
</tr>
<tr>
<td>PCL</td>
<td>Polycaprolactone</td>
</tr>
<tr>
<td>PE</td>
<td>Polyethylene</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Description</td>
</tr>
<tr>
<td>--------------</td>
<td>-------------</td>
</tr>
<tr>
<td>PHB</td>
<td>Poly-hydroxybutyrate</td>
</tr>
<tr>
<td>PLA</td>
<td>Poly-lactic acid</td>
</tr>
<tr>
<td>PP</td>
<td>Polypropylene</td>
</tr>
<tr>
<td>PVC</td>
<td>Polyvinyl chloride</td>
</tr>
<tr>
<td>RH</td>
<td>Relative humidity</td>
</tr>
<tr>
<td>rHDPE</td>
<td>Recycled high density polyethylene</td>
</tr>
<tr>
<td>RT</td>
<td>Room temperature</td>
</tr>
<tr>
<td>SEA</td>
<td>Specific extinction area</td>
</tr>
<tr>
<td>SEM</td>
<td>Scanning electron microscopy</td>
</tr>
<tr>
<td>SFFT</td>
<td>Single fibre fragmentation test</td>
</tr>
<tr>
<td>SFTT</td>
<td>Single fibre tensile test</td>
</tr>
<tr>
<td>T_d</td>
<td>Decomposition temperature</td>
</tr>
<tr>
<td>T_g</td>
<td>Glass transition temperature</td>
</tr>
<tr>
<td>TGA</td>
<td>Thermo gravimetric analysis</td>
</tr>
<tr>
<td>THR</td>
<td>Total heat released</td>
</tr>
<tr>
<td>TS</td>
<td>Thickness swelling</td>
</tr>
<tr>
<td>TTI</td>
<td>Time to ignition</td>
</tr>
<tr>
<td>UPE</td>
<td>Unsaturated polyester</td>
</tr>
<tr>
<td>US</td>
<td>United States</td>
</tr>
<tr>
<td>UV</td>
<td>Ultraviolet</td>
</tr>
<tr>
<td>UVA</td>
<td>Ultraviolet light absorber</td>
</tr>
<tr>
<td>VTS</td>
<td>Vinyltrimethoxy silane</td>
</tr>
<tr>
<td>WF</td>
<td>Wood fibre</td>
</tr>
<tr>
<td>WPC</td>
<td>Wood/polymer composites</td>
</tr>
<tr>
<td>Wt</td>
<td>Weight</td>
</tr>
<tr>
<td>XPS</td>
<td>X-ray photoelectron spectroscopy</td>
</tr>
</tbody>
</table>