UNIVERSITY OF SOUTHERN QUEENSLAND

USING TOPOLOGY OPTIMISATION IN TUNNEL REINFORCEMENT DESIGN

A dissertation submitted by

TIN NGUYEN

B.Eng., Danang University of Technology, Vietnam, 2005
M.Eng, Asian Institute of Technology, Thailand, 2009

For the award of the degree of

Doctor of Philosophy

2015
Dedication

To my family
Abstract

In tunnel reinforcement design, having a suitable tool which is able to capture complex ground material and various tunnelling conditions is definitely significant. Since early stages of tunnelling engineering, empirical approaches using rock mass classification and accumulated experiences have been commonly used. Nevertheless, as developed from long-term accumulated knowledge in older projects, it is not always applicable to new ground conditions and also hardly guarantees a best design to be obtained. Analytical method is another tool to provide explicit calculations, however, its applications are limited to only some simple scenarios such as circular tunnel. It is also noted that these two approaches are only applicable to free-field conditions. Owing to the ability in modelling complex ground conditions with consideration of discontinuities or adjacent structures, numerical simulations has been constantly developing and applying in tunnel excavation design in the last decades. An appropriate incorporation of numerical analysis and optimisation techniques, if applicable, would provide a powerful tool for obtaining an optimal tunnel design.

In spite of effectiveness of topology optimisation theory, which is proved to work effectively in a broad range of engineering disciplines, its applications in geotechnical engineering and specifically in tunnelling design is fairly humble. Some research works have already attempted to incorporate topology optimisation techniques in tunnel reinforcement design and proposed some initial achievements in the area. However, simple assumptions on the material models and modelling techniques of geomaterials and reinforcement materials have essentially limited its applications and practicality in a complicated structure like underground excavations.
This thesis explores the incorporation of topology optimisation methods in tunnel reinforcement design. The main focus of the study is to improve some critical shortcomings of the previous works on reinforcement optimisation and propose new optimisation algorithms in searching for the best distribution of reinforcement material.

As the first step in this study, material nonlinearities are accounted for in optimisation techniques to improve the linear elastic material model assumption of previous studies. Practical behaviours of material, hence, can be captured. The Bidirectional Evolutionary Structural Optimisation (BESO) method is extended to consider nonlinear material behaviour. An elastic perfectly-plastic Mohr-Coulomb model is utilised for both host ground and reinforced material. External work along the tunnel wall is considered as the objective function. Various in situ stress conditions with different horizontal stress ratios and different geostatic stress magnitudes are investigated through several examples. The outcomes show that the proposed approach is capable of improving tunnel reinforcement design. Also, significant difference in optimal reinforcement distribution for the cases of linear and nonlinear analysis results proves the importance of the influence of realistic nonlinear material properties on the final outcome.

Another serious shortcoming of the previous studies is that reinforced areas were modelled as homogenised isotropic elements. Optimisation results, therefore, do not clearly show reinforcement distributions, leading to difficulties in explaining the final outcomes. In order to overcome this deficiency, a more advanced modelling technique in which reinforcements are explicitly modelled as truss elements embedded in rock mass media is employed. Corresponding optimisation algorithm are proposed to seek for an optimised bolt layout. Also, a topology optimisation technique is employed to simultaneously optimise all bolt parameters including pattern for bolts, spacing between the bolts and size of the bolts. The external work along the opening is selected as the objective function with a constraint on volume of bolt. To demonstrate the capabilities of the methods, numerical examples of nonlinear material models are presented. Various tunnelling characters and geological conditions with presence of discontinuities in the host rock have been successfully investigated in numerous examples, showing
the broad applicability and usefulness of the proposed approaches. In reality, minimisation of certain displacements such as heave issues or ground displacements in shallow tunnel is sometimes of concern. Extending optimisation methods to capture these objective functions is crucial. A general displacement-based objective function is introduced with a constraint on a bolt volume. Sensitivity analysis is conducted and details on identification of necessary parameters are provided. Using the presented optimisation algorithm, an example on optimising bolt layout to minimise a heave function is performed. It is shown that the displacement-based objective function can be effectively captured by the proposed optimisation technique.

This study focuses on applying topology optimisation in tunnel reinforcement design to take advantage of both numerical analysis and optimisation methods. The presented techniques are applicable to any material models of host ground and reinforcements and provides clear and practical final outcomes. Using the proposed methods, all significant factors including geological conditions, construction sequences and tunnel characters can be taken into account to obtain an optimised reinforcement distribution. It is also demonstrated that various objective functions can be employed and usefully optimised by the methods. The obtained results proves that the optimisation techniques presented in this thesis are promising tools to reinforcement design of underground excavations.
Certification of Dissertation

I certify that the idea, experimental work, results and analyses, software and conclusions reported in this dissertation are entirely my own effort, except where otherwise acknowledged. I also certify that the work is original and has not been previously submitted for any other award.

Tin NGUYEN

ENDORSEMENT

Dr. Kazem GHABRAIE, Principal supervisor

Prof. Thanh TRAN–CONG, Co-supervisor
Acknowledgements

Firstly, my sincere thanks are extended to Prof. Thanh Tran-Cong for giving me an opportunity to pursue my PhD at the University of Southern Queensland (USQ), opening up a new and bright chapter of my academic career. His financial and academic support are also appreciated. I would like to express my profound gratitude to my principle supervisor, Dr. Kazem Ghabraie, for his invaluable supervision, fruitful discussions, useful writing corrections and inspirations during the period of my PhD research.

I owe this work to my dear parents. Their endless love, unconditional lifetime sacrifices and continued encouragements are invaluable sources that constantly keeps me move forward.

My sincere appreciations are due to my beloved wife for being beside me through the ups and downs, sharing many tough times in our personal life and especially giving a birth of our little daughter, Emma. Without her supportive encouragement, I have never made this to the end. Special thanks are also due to my lovely daughter for all much happiness she has brought to me during my period of intensive research.

I would like to extend my gratitude to all members of my parents-in-law’s family, my brother, Thien, my sister-in-law, Nhung and my nephew, Duc Trong, for their warm love and selfless support.

The project was jointly funded by the University of Southern Queensland (USQ), Faculty of Health, Engineering and Surveying (FHES), and the Computational Engineering and Science Research Centre (CESRC). This financial support is gratefully acknowledged.
Papers resulting from the Research

Journal papers

Conference papers

Contents

Dedication ii

Abstract

Certification of Dissertation vi

Acknowledgments viii

Papers resulting from the research x

List of Figures xvi

List of Tables xix

Chapter 1 Introduction 1

1.1 General .. 1
1.2 Levels of optimisation 2
1.3 Applications of Topology Optimisation in Tunnelling Design ... 3
1.4 Objectives and Scope of Study 5
1.5 Outline of the Thesis 6

Chapter 2 Literature Review 7

2.1 Overview of rock mechanics 7
 2.1.1 Special character of rock mass 7
 2.1.2 Strength of rock mass 8
 2.1.3 Rock mass classification systems 9
 2.1.4 Numerical analysis methods in rock mechanics ... 12
2.2 Tunnel Support and Reinforcement 13
 2.2.1 Terminology 13
2.2.2 Ground and support interaction 14
2.2.3 Rock bolt ... 15
2.2.4 Modelling of rock bolts 16

2.3 Rock engineering design tools 17
2.3.1 Procedures of rock engineering design 17
2.3.2 Empirical systems ... 18
2.3.3 Analytical calculations 21
2.3.4 Numerical simulations 21
2.3.5 Observational methods 22
2.3.6 Summary .. 22

2.4 Simulation of excavation sequence and reinforcement installation 23
2.4.1 2D/3D modelling ... 23
2.4.2 Simulating tunnel excavation 23

2.5 General form of optimisation problems 24

2.6 Methods of topology optimisation 25
2.6.1 Overview .. 26

2.7 The SIMP method .. 27
2.7.1 Overview .. 27
2.7.2 Details of the method 28
2.7.3 Numerical instabilities and solutions 30
2.7.4 Example ... 32

2.8 The BESO method .. 34
2.8.1 Overview .. 34
2.8.2 Details of the method 36
2.8.3 Numerical instabilities and solutions 38
2.8.4 Examples ... 40

2.9 Applying topology optimisation in underground excavation design 40
2.9.1 Shape optimisation of underground excavations 42
2.9.2 Reinforcement optimisation of underground excavations .. 43
2.9.3 Limitations of the previous works and potential improvement 44

Chapter 3 Nonlinear behaviour of geomaterial in optimisation 47
3.1 Motivations .. 47
3.2 Tunnel modelling ... 48
3.3 Statement of objective function 51
3.4 Nonlinear sensitivity analysis .. 51
 3.4.1 Numerical calculation of sensitivity numbers 54
3.5 BESO procedures .. 56
3.6 Examples and discussion ... 57
 3.6.1 Examples of various horizontal stress ratios in plastic cases 60
 3.6.2 Examples of stress dependency in plastic cases 60
 3.6.3 Effects of tunnel shape on the reinforcement distributions 63
 3.6.4 Demonstrations of effectiveness of the proposed approach 65
3.7 Summary ... 67

Chapter 4 Optimisation of Rock Bolt Size .. 69
4.1 Modelling issues of reinforcement material 69
4.2 Modelling of reinforcement system and excavation sequence 70
4.3 Problem statement and optimisation method 71
4.4 Sensitivity analysis ... 73
4.5 Improving the uniform rock bolt distribution 76
4.6 Effects of \textit{in situ} stress conditions on rock bolt design 81
4.7 Effects of penalisation on optimisation outcomes 83
4.8 Effects of ground structure density on optimisation outcomes 85
4.9 Effects of rock material on optimised bolt layout design 87
4.10 Effects of bedding plane on optimised bolt layout 88
4.11 Summary .. 91

Chapter 5 Simultaneous Optimisation of Rock Bolt Size and Pattern 93
5.1 Overview .. 93
5.2 Design variables .. 94
5.3 Objective function and problem statement 96
5.4 Sensitivity analysis ... 96
 5.4.1 Sensitivity analysis for lengths and orientations of the bolts 97
5.5 Variable updating schemes 98
Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.5.1 Updating lengths and orientations</td>
<td>98</td>
</tr>
<tr>
<td>5.6 A basic example</td>
<td>101</td>
</tr>
<tr>
<td>5.7 Studying the effects of tunnel shape on optimal bolt configurations</td>
<td>104</td>
</tr>
<tr>
<td>5.8 Consideration of discontinuities</td>
<td>106</td>
</tr>
<tr>
<td>5.8.1 Bedding Plane example</td>
<td>107</td>
</tr>
<tr>
<td>5.8.2 Fractured rock mass</td>
<td>109</td>
</tr>
<tr>
<td>5.9 Summary</td>
<td>112</td>
</tr>
<tr>
<td>Chapter 6 Looking at Displacement-based Objective Functions</td>
<td>115</td>
</tr>
<tr>
<td>6.1 Introduction</td>
<td>115</td>
</tr>
<tr>
<td>6.2 A general linear displacement-based objective function</td>
<td>116</td>
</tr>
<tr>
<td>6.3 Sensitivity analysis</td>
<td>117</td>
</tr>
<tr>
<td>6.3.1 Calculation of λ</td>
<td>119</td>
</tr>
<tr>
<td>6.4 Minimising tunnel heave</td>
<td>120</td>
</tr>
<tr>
<td>6.4.1 Verification of sensitivity analysis</td>
<td>121</td>
</tr>
<tr>
<td>6.4.2 Optimisation of bolt sizes</td>
<td>122</td>
</tr>
<tr>
<td>6.5 Summary</td>
<td>124</td>
</tr>
<tr>
<td>Chapter 7 Conclusion</td>
<td>125</td>
</tr>
<tr>
<td>References</td>
<td>128</td>
</tr>
</tbody>
</table>
List of Figures

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>Three levels of optimisation: a) Topology optimisation; b) Shape optimisation; c) Sizing optimisation (Ghabraie, 2009)</td>
</tr>
<tr>
<td>2.1</td>
<td>Ground reaction curve and support interaction (Ghabraie, 2009)</td>
</tr>
<tr>
<td>2.2</td>
<td>An algorithm of the SIMP method</td>
</tr>
<tr>
<td>2.3</td>
<td>Checker board problem</td>
</tr>
<tr>
<td>2.4</td>
<td>Design domain of a simply supported beam</td>
</tr>
<tr>
<td>2.5</td>
<td>Topologies obtained by the SIMP method for a simply supported beam (K is the iteration number). Owing to symmetry, only half of the beam is shown.</td>
</tr>
<tr>
<td>2.6</td>
<td>An algorithm for the BESO method</td>
</tr>
<tr>
<td>2.7</td>
<td>Design domain of a cantilever beam</td>
</tr>
<tr>
<td>2.8</td>
<td>Topologies obtained by the BESO method for the cantilever beam problem (K is the iteration number and VF is the volume fraction)</td>
</tr>
<tr>
<td>3.1</td>
<td>Initial guess design</td>
</tr>
<tr>
<td>3.2</td>
<td>Flowchart of tunnel reinforcement optimisation using the BESO method</td>
</tr>
<tr>
<td>3.3</td>
<td>Optimal tunnel reinforcement with an elastic material model</td>
</tr>
<tr>
<td>3.4</td>
<td>Nonlinear reinforcement optimisation under various horizontal stress ratios</td>
</tr>
<tr>
<td>3.5</td>
<td>Stress dependency of nonlinear optimal tunnel reinforcement</td>
</tr>
<tr>
<td>3.6</td>
<td>Initial guess design</td>
</tr>
</tbody>
</table>
List of Figures

3.7 Reinforcement distribution for circular tunnel with $\sigma_1 = 0.8$ MPa.

An even distribution of reinforcement, which is similar to the proposed initial design, is expected for the condition of the hydrostatic stress state ($k=1$) and the circular deep tunnel, where material weight is not considered. 64

3.8 Conventional and optimal rock bolt distribution 66

4.1 The three steps in modelling the excavation process. 71

4.2 Flowchart of the bolt size optimisation approach 74

4.3 Full model of the tunnel .. 76

4.4 Initial bolt distribution and the ground structure with bolt spacing of 1 m (GS10). As a symmetric model is shown in this figure, the half bolt areas of “157” are used for the bolts on the symmetry line. 77

4.5 Bolt layouts and objective function variation for the case of $\sigma_1 = 5$ MPa and $k = 0.4$. Numbers at the end of bolts represent their cross section area per unit length of the tunnel in mm2/m. 79

4.6 Tunnel displacements under uniform and optimised bolt layouts (tunnel deformation is multiplied by a factor of 25) 80

4.7 Initial design for circular tunnel 81

4.8 Effects of in-situ stress conditions on optimised reinforcement layouts 82

4.9 Effects of penalisation on optimised reinforcement outcomes ($\sigma_1 = 4$ MPa, $k = 0.4$) 84

4.10 Ground structures with bolt spacings of 0.5 m (GS05) and 1.5 m (GS15) .. 85

4.11 Effects of ground structure density on optimised reinforcement outcomes ($\sigma_1 = 3$ MPa, $k = 0.4$) 86

4.12 Effects of rock material on optimised reinforcement outcomes ($\sigma_1 = 5$ MPa, $k = 0.4$) 89

4.13 Effects of bedding planes on optimised reinforcement outcomes ($\sigma_1 = 5$ MPa, $k = 1$) 90

5.1 An example of finding a suitable set of allowable end points for a bolt emerging from point A. 95
5.2 Ground structure and sub-ground structure for the bolt having the first node at A. ... 95
5.3 Flowchart of the proposed approach. 100
5.4 Optimised bolt layout and objective function variations for the case of $\sigma_1 = 3$ MPa and $k = 1$. Numbers at the end of bolts represent their cross section areas per unit length of the tunnel in mm2/m. ("A" stands for area optimisation and "P" stands for pattern optimisation) ... 102
5.5 Tunnel displacements under uniform and optimised bolt layouts (the tunnel deformation is multiplied by a factor of 10). 104
5.6 Initial and optimised bolt configurations for different tunnel shapes and corresponding objective function variations ($\sigma_1 = 3$ MPa and $k = 1$). ... 105
5.7 Effects of bedding plane on the optimisation outcomes ($\sigma_1 = 5$ MPa and $k = 1$). ... 108
5.8 Model of the fracture rock mass .. 110
5.9 Effects of fractures on the optimisation outcomes ($\sigma_1 = 4$ MPa and $k = 1$) ... 111
6.1 Load set to evaluate floor heave 120
6.2 Initial bolt layout ... 121
6.3 Approximation of virtual load for elastic case 122
6.4 Approximation of virtual load for elastic-plastic case 123
6.5 Bolt size optimisation for the tunnel heave objective function ($\sigma_1 = 3$ MPa, $k = 1$) ... 123
List of Tables

<table>
<thead>
<tr>
<th>Table</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Some empirical methods for the underground support design (revised from Palmstrøm and Stille (2007))</td>
<td>19</td>
</tr>
<tr>
<td>3.1</td>
<td>Engineering properties of host ground and reinforced material</td>
<td>50</td>
</tr>
<tr>
<td>3.2</td>
<td>Physical and mechanical properties of shotcrete lining and rock bolts</td>
<td>66</td>
</tr>
<tr>
<td>4.1</td>
<td>Properties of homogeneous rock and reinforcement materials</td>
<td>78</td>
</tr>
<tr>
<td>4.2</td>
<td>Summary of the optimisation outcomes under various in situ stress conditions</td>
<td>83</td>
</tr>
<tr>
<td>4.3</td>
<td>Summary of the optimisation outcomes for different ground structure densities ($\sigma_1 = 3\text{ MPa, } k = 0.4$)</td>
<td>85</td>
</tr>
<tr>
<td>4.4</td>
<td>Properties of jointed rock</td>
<td>88</td>
</tr>
<tr>
<td>4.5</td>
<td>Summary of the optimisation outcomes for different rock joint sets ($\sigma_1 = 5\text{ MPa, } k = 0.4$)</td>
<td>88</td>
</tr>
<tr>
<td>4.6</td>
<td>Summary of the optimisation outcomes considering bedding planes ($\sigma_1 = 5\text{ MPa, } k = 1$)</td>
<td>91</td>
</tr>
<tr>
<td>5.1</td>
<td>Properties of rock and reinforcement materials</td>
<td>101</td>
</tr>
<tr>
<td>5.2</td>
<td>Summary of the optimisation outcomes for different tunnel shapes ($\sigma_1 = 3\text{ MPa and } k = 1$)</td>
<td>106</td>
</tr>
<tr>
<td>5.3</td>
<td>Summary of the optimisation outcomes in consideration of effects of a bedding plane ($\sigma_1 = 5\text{ MPa and } k = 1$)</td>
<td>107</td>
</tr>
<tr>
<td>5.4</td>
<td>Summary of the optimisation outcomes in consideration of effects of fractures ($\sigma_1 = 4\text{ MPa and } k = 1$)</td>
<td>110</td>
</tr>
</tbody>
</table>