Faculty of Health, Engineering and Sciences

SCALING EFFECTS ON LANDSCAPE FUNCTION ANALYSIS OF RANGELANDS USING REMOTELY SENSED IMAGERY

A thesis submitted by

John Ernest Dunwoody

In fulfilment of the requirements of

Doctor of Philosophy

2015
ABSTRACT

The declining productivity and loss of ecosystem condition of arid and semi-arid lands is a worldwide concern and a major problem in Australia. Ecosystem condition can be assessed with the help of satellite imagery to measure the loss of basic resources (leakiness) from these areas. Leakiness has been shown to depend on the amount, type and position of vegetation cover in the landscape. It is well established that image scale (the observation scale) strongly affects the detection of landscape patterns and that rescaling changes these observed patterns through change in the structure of image features. Determining the relationship between leakiness calculated from images at different scales may assist in comparing results from the newer satellites with data from older long-duration time-series satellites such as Landsat and MODIS.

This research investigated the effect of different image resolutions on the calculation of leakiness (CSIRO Leakiness Calculator) from a savannah grazing catchment in North Queensland, Australia. Temporally and spatially coincident images from SPOT, Landsat and MODIS satellites were analysed for 11 vegetation indices. These were used in the Leakiness Calculator (LC) to calculate catchment leakiness.

Catchment and sub-catchments were defined from DEMs at scales matching the imagery. A high resolution DEM matching the SPOT resolution was extracted from an aerial photograph stereo model. The SRTM 1s DEM and the GEODATA 9s DEM were each rescaled to match the Landsat and MODIS image scales. Rescaling was by cubic convolution in ArcGIS and other image adjustments were done using ERDAS Imagine, SAGA and ERMapper software. Image structure was analysed by variogram analysis using FETEX 2 software in an ENVI IDL environment.

This study found that the amount of vegetation cover varied with the type of analysis method and the spatial resolution. There was no clear pattern of cover values, except that the 25m Ground Cover Index (GCI) had the highest values. The usual measure of catchment leakiness, Calculated Leakiness (Lcalc) was nominally higher at higher resolutions. This is because it is influenced by the number of cells in the analysis area. A new measure of leakiness, the Adjusted Average Leakiness (AAL) was formulated to be insensitive to cell number and to cell size.

AAL responded inversely to amount of vegetation cover for a given vegetation index but there was no consistent relationship between AAL and type of vegetation index. AAL from Perpendicular Distance Indices (PDI) correlated negatively with cover (as expected) but AAL from the Soil Adjusted Vegetation Index (SAVI) and the Normalised Difference Vegetation Index (NDVI) correlated positively with amount
of cover (unexpected). Other vegetation indices had irregular correlations between amount of cover and AAL.

Leakiness scaling functions for calculating both types of leakiness between 10 – 250m resolutions were developed (Resolution Scalograms). Lcalc scalograms took the form of linear reciprocal squared relationships for leakiness from SAVI and the Stress Related Vegetation Index (STVI) and a cubic reciprocal squared relationship for leakiness from the Perpendicular Distance of red-over-green band index (PDrg). AAL scalograms were simpler and took the form of simple linear relationships for leakiness from SAVI and STVI, but cubic for leakiness from PDrg. The high correlation between sill variance and resolution allowed the development of Variance Leakiness Scalograms (VLS). VLS for SAVI and STVI were positive logarithmic relationships and the PDrg VLS was a positive linear relationship.

Analysis of the structure (variance) of observation scale images of the catchment showed they had bounded natural logarithmic variograms. This structure decayed with progressive upscaling. Both observation scale and upscaled images had higher variances at lower a resolution. This is substantially different from previously reported findings. Three-dimensional (3D) models of the variance surfaces showed the effect of upscaling on image structure for different vegetation indices. The PDrg image variance response was the most complex. These models identified the optimal image resolution at which SAVI, STVI and PDrg features are expressed. Correlation between leakiness and conventional variogram indices and indices developed by the Universidad Politecnica de Valencia (UPV) was used to analyse for relationships between image structure and resolution. DEM variograms behaved differently. They had unbounded quadratic variograms and retained their form when upscaled.

The effect of vegetation cover in different areas of the catchment was tested by increasing SAVI and PDrg vegetation cover at different locations relative to major catchment features such as streamlines, elevation, slope, aspect, topographic feature and amount of pre-existing cover. Leakiness decreased the most when cover was added to zones distant from streams, at higher elevations, on lower slopes, on the crest of rises, on the top of ridge lines and in areas with the lowest amount of pre-existing cover. It is acknowledged that these findings are not entirely consistent with each other. There is mixed support for them in the literature. Smaller amounts of cover reduced leakiness more per unit of added cover than larger amounts of cover in all situations.
CERTIFICATION OF DISSERTATION

I certify that the ideas, experimental work, results, analyses, software and conclusions reported in this dissertation are entirely my own efforts, except where otherwise acknowledged. I also certify that the work is original and has not been previously submitted for any other award, except where otherwise acknowledged.

__ ____________________________
Signature of Candidate Date

ENDORSEMENT

__ ____________________________
Signature of Principal Supervisor Date

__ ____________________________
Signature of Associate Supervisor Date
ACKNOWLEDGEMENTS

A thesis is not possible without the help of many people but most of all I would like to express my sincere appreciation to my supervisors. First and foremost to Associate Professor Armando Apan who both introduced me to GIS and Remote Sensing in the beginning through his very capable teaching skills and who has stood by me, ever ready to assist me throughout this thesis. He helped me realise a design that was only a vague idea in the beginning, helped me formulate the approach, the analysis methods and finally the interpretation of the findings. His forbearance with the idiosyncrasies of a senior student is acknowledged and very much appreciated. Dr Xiaoye Liu, my co-supervisor, has been quietly involved in all aspects of this work as she was with my Master's Thesis. She has been someone I could always depend on for ideas or whenever a difficult processing step was encountered. Individually and collectively, I thank both my supervisors.

This work required access to many resources without which it would not have been possible. Firstly, I acknowledge the USQ resources that were made available including computing resources of the ICT Department and the field mapping equipment provided by the Department of Civil Engineering and Surveying. I especially appreciate the help of Mr Clinton Caudell in overcoming many practical problems associated with fieldwork. A financial travel grant from the National Climate Change Adaptation Research Facility (NCCARF) was particularly helpful with costs associated with conferring with established researchers at CSIRO and the Queensland Department of Agriculture, Fisheries and Forestry (QDAFF).

Mr Lee Blacklock of the Queensland Natural Resources Management Groups Cooperative was very helpful in making SPOT imagery available along with Mr Doug Willis of the North Queensland Dry Tropics Natural Resources Management Group. The Government of the USA also deserves credit for continuing to make GPS data signals and Landsat and MODIS imagery available free of cost to the user.

Many people gave freely of their time and technical advice, especially Queensland State Government agency staff. Special acknowledgement is given to Mr Adrian Neal, Mr Mehedi Etemadi, Ms Jasmine Muir, Dr Peter Scarth and Dr Robert Karfs for their counsel and advice. No work of this type could be done without the pioneering work of CSIRO investigators and special acknowledgement is given to Mr David Tongway, Dr Adam Liedloff, Mr John Ludwig, Dr Brett Abbott, Mrs Vanessa Chewings and Dr Gary Bastin each of whom gave very useful and helpful advice. I also acknowledge the patient and helpful processing advice of two fellow students, Mr Govinda Baral and Mr Rodolfo Espada.
All fieldwork has a “home in the bush” somewhere and it fell to the lot of four friendly graziers to let me tramp throughout their properties collecting data. Without release of confidentiality, I am very thankful for the goodwill of Brian and Molly Christensen of Jesmond Station, Jennifer and Robert Laurie of Powlathanga station, Ian and Pam Berryman of Fifteen Mile Station and David Berryman and Rita Parker of Mt Windsor Station for allowing me open access for collecting a suite of field records. These were essential for correctly georegistering the imagery and ground-truthing image values.
PUBLICATIONS RELATED TO THIS THESIS

5. Dunwoody, E., A. Apan, and X. Liu (in preparation). Not all bare spots are the same: Use of the Leakiness Calculator to rank revegetation areas in a watershed. To be submitted to journal of Applied Geography, Elsevier Pty. Ltd. Cambridge MA.
TABLE OF CONTENTS

Abstract .. iii
Certification of Dissertation ... v
Acknowledgements ... vii
Publications related to this Thesis ... ix
Table of Contents ... xi
Table of Figures .. xix
List of Tables ... xxix
Photographs .. xxxiii
Appendices ... xxxv
Abbreviations .. xxxvii

CHAPTER 1

INTRODUCTION

1.1. Introduction ... 1
1.2. Statement of the Problem ... 3
1.3. Aim ... 5
1.4. Objectives ... 5
1.5. Significance of this Research ... 5
1.6. Limitations of the Study ... 8
1.7. Conclusion ... 9

CHAPTER 2

LITERATURE REVIEW

2.1. Overview ... 11
2.2. Rangeland Condition Monitoring .. 13
2.3. Ecosystem Condition Monitoring .. 16
2.4. Landscape Function Indices (LFI) ... 18
 2.4.1. Directional Leakiness Index (DLI) ... 20
 2.4.2. Cover-based Directional Leakiness Index (CDLI) 21
 2.4.3. Leakiness Index (LI) ... 22
2.5. Bio-geophysical Features ... 25
2.6. Leakiness at Different Image Scales .. 30
CHAPTER 5

DEVELOPMENT OF LEAKINESS SCALING FUNCTIONS

5.1. Introduction .. 121
5.2. Scaling and Leakiness .. 121
5.3. Research Methods .. 124
 5.3.1. Overview .. 124
 5.3.2. Image and leakiness processing procedures 124
 5.3.3. Statistical procedures .. 125
 5.3.4. Scalogram derivation .. 126
CHAPTER 6

EFFECT OF UPSCALING ON IMAGE STRUCTURE

6.1. Introduction
6.1.1. Changing Scales
6.1.2. General application
6.1.3. Application to Leakiness
6.2. Research Methods
6.2.1. Data Sources
6.2.2. Variance Analysis
6.2.3. Correlation Analysis
CHAPTER 7

EFFECT OF VEGETATION COVER POSITION ON
CATCHMENT LEAKINESS

7.1. Introduction ..241
7.2. Methods ...244
 7.2.1. Zonal cover analysis plan ..244
 7.2.2. Zonal pixel adjustment procedure ..245
 7.2.3. No cover offset and Cover offset procedures ..247
 7.2.4. Morphological feature preparation and classification247
 7.2.4.1. Drainage Line Zones ...247
 7.2.4.2. Elevation zones ...248
 7.2.4.3. Slope zones ...249
 7.2.4.4. Aspect zones ...250
 7.2.4.5. Topographic zones ..251
 7.2.4.6. Cover zones ..253
 7.2.5. Analysis ...254
7.3. Results ..255
 7.3.1. General Cover Increase ..255
 7.3.2. Drainage Distance Zones ..256
 7.3.2.1. SAVI Coverage ..256
 No cover offset ..257
 Cover offset ...259
 7.3.2.2. PDrg Coverage ..260
 No cover offset ...261
 Cover Offset ...263
 7.3.3. Elevation Zones ..265
 7.3.3.1. SAVI Coverage ..265
 No cover offset ..266
 Cover offset ...268
CHAPTER 8

CONCLUSION

8.1. Introduction .. 313
8.2. Findings ... 313
 8.2.1. Adjusted Average Leakiness Metric 313
 8.2.2. Cover and Leakiness ... 314
 8.2.3. Leakiness Scaling Functions 315
 8.2.4. Scaling Effect on Image Structure 315
 8.2.5. Position of Cover in Catchment 316
8.3. Future Research ... 317
REFERENCES ... 319

APPENDICES ... 331
TABLE OF FIGURES

CHAPTER 1

Figure 1.1 Landscape function measurement schemes. Analogue monitoring diagram.. 7

CHAPTER 2

Figure 2.1. The diversity of Biogeographical Regions comprising the rangelands is shown by the coloured areas. Natural Resource Management Regions and Local Land Service regions (NSW only) are shown in initialled areas. ... 12

Figure 2.2 Trigger, Transfer, Reserve Pulse model of ecosystem function 16

Figure 2.3. The Leakage Index for a rangeland monitoring site 200km north of Alice Springs, compared with mean levels of persistent vegetation from 1980 to 2002, (a) and Annual rainfall from 1979 to 2004 relative to the mean of 304 mm (b)... 24

Figure 2.4. Examples of pattern scalograms for landscape metrics as a result of changing the resolution .. 31

Figure 2.5. Role of landscape scaling relations in influencing scaling functions and prediction of consequences ... 34

Figure 2.6 Patch to Interpatch differences in soil N in relation to patch size for small-scale local landscape vegetation-soil patches from... 36

Figure 2.7 Apparent disjunction in scaling relationship for soil N accumulation between small local patches and large regional patches from 36

Figure 2.8 Effect of Isotropic Point Spread Function on pixel upwelling radiance... 41

Figure 2.9 Gaussian bounded variogram .. 42

Figure 2.10 Monotone semi-variogram after ... 44

CHAPTER 3

Figure 3.1 Chapter guide to the processing and analysis procedures 49

Figure 3.2 Location of experimental catchment .. 50

Figure 3.3 Remnant ecosystem coverage of experimental catchment 51

Figure 3.4 Relative amounts of each Remnant Ecosystem (ha) 51

Figure 3.5 Research Schema ... 55

Figure 3.6 Key reference points map ... 57

Figure 3.7 Ground truth field records .. 59

Figure 3.8 Experimental Analysis Path.. 60
CHAPTER 4

Figure 4.1 Ten-meter DEM catchment and sub-catchments ... 69
Figure 4.2 Twenty five meter DEM catchment and sub-catchments 70
Figure 4.3 Two hundred and fifty meter DEM catchment and sub-catchments 70
Figure 4.4 Ten meter scale catchment Analysis Masks .. 71
Figure 4.5 Twenty five meter scale Analysis Masks ... 72
Figure 4.6 Two hundred and fifty meter scale Analysis Masks 72
Figure 4.7 Example MSDI cover layers ... 74
Figure 4.8 Example NDVI cover layers .. 74
Figure 4.9 Example SAVI cover layers .. 75
Figure 4.10 Example RI Cover layers .. 75
Figure 4.11 Example STVI-4 Cover layers ... 76
Figure 4.12 Example CORVI Cover layers ... 77
Figure 4.13 Example PDrG Cover layers .. 78
Figure 4.14 Example PDrM Cover layers ... 78
Figure 4.15 Example PDrS Cover layers .. 79
Figure 4.16 Example SARVI Cover layers ... 79
Figure 4.17 Example GCI cover layer .. 80
Figure 4.18 Vegetation Cover at three resolution .. 83
Figure 4.19 Leakiness at three resolutions ... 83
Figure 4.20 Response of Leakiness to Average Cover (multiple indices) 84
Figure 4.21 Vegetation cover distribution by cover index at 10m resolution 85
Figure 4.22 Vegetation cover distribution by cover index at 25m resolution 86
Figure 4.23 Vegetation cover distribution by cover index at 250m resolution 88
Figure 4.24 Variation in Average Cover by Cover Index and resolution 89
Figure 4.25 Leakiness at different resolutions for different cover indices 90
Figure 4.26 Leakiness Sensitivity .. 91
Figure 4.27 Change in Leakiness Sensitivity to Cover ... 92
Figure 4.28 Adjusted Average Leakiness values .. 93
Figure 4.29 Adjusted Average Leakiness response to resolution 93
Figure 4.30 Adjusted Average Leakiness response to amount of cover 94
Figure 4.31 Adjusted Average Leakiness Sensitivity ... 95
Figure 4.32 Change in AAL Sensitivity to Cover ... 95
Figure 4.33 Average Cover (%) for each sub-catchment (10m) 97
Figure 4.34 Leakiness of each sub-catchment by cover index (10m) 98
Figure 4.35 Clustering of Leakiness and Average Cover in data space (10m) 99
Figure 4.36 Average Cover for each sub-catchment (25m) ... 101
Figure 4.37 Adjusted Average Leakiness for each sub-catchment (25m) 102
Figure 4.38 Clustering of AA Leakiness and Average Cover in data space (25m) 104
Figure 4.39 Details of Band Ratio AA Leakiness and Average Cover in data space (25m) ... 104
Figure 4.40 Average Cover for each sub-catchment (250m) ... 106
Figure 4.41 Adjusted Average Leakiness for each sub-catchment (250m) 107
Figure 4.42 Clustering of AA leakiness and Average Cover in data space (250m) 108
Figure 4.43 Aggregate-of-sub-catchments ... 109
Figure 4.44 Whole-of-catchment .. 109

CHAPTER 5

Figure 5.1. Soil loss as a function of average vegetation cover 122
Figure 5.2 Mean levels of ground cover (Botanal %) and catchment leakiness (LI) calculated from PD$_{54}$ coverage of 5m resampled Quickbird imagery. 123
Figure 5.3 Mean levels of ground cover (Botanal %) and catchment leakiness (LI) calculated from the GCI coverage of 25m resampled Landsat imagery 123
Figure 5.4 Process Overview .. 124
Figure 5.5 Procedure used to upscale files and calculate leakiness 125
Figure 5.6 Statistical analysis test procedures used in development of scaling equations .. 126
Figure 5.7 Scalogram development procedure ... 127
Figure 5.8 Difference in Average Cover and Calculated Leakiness from upscaling the image versus upscaling the cover layer .. 128
Figure 5.9 Comparison of Cover and Leakiness from upscaling the image versus upscaling the thematic cover layer .. 129
Figure 5.10 Relationship of L$_{calc}$, Cover (SAVI) and Cell Count with Resolution 130
Figure 5.11 Distribution of L$_{calc}$ transformed (SAVI) against resolution 131
Figure 5.12 Comparison of L$_{calc}$ expt. against L$_{calc}$ pred. 131
Figure 5.13 Relationship of Leakiness, Cover (STVI) and cell count with Resolution ... 132
Figure 5.14 Distribution of transformed Leakiness (STVI) against resolution 132
Figure 5.15 Comparison of experimental Leakiness against predicted Leakiness (STVI). ... 133
Figure 5.16 Relationship of Leakiness, Cover (PD$_{rg}$) and Cell Count with Resolution ... 134
Figure 5.17 Distribution of transformed L$_{calc}$ (PD$_{rg}$) against resolution 134
Figure 5.18 Residuals for linear and cubic fits ... 134
Figure 5.19 Comparison of Cubic and Linear solutions to PD$_{rg}$ L$_{calc}$ predictive equations ... 136
Figure 5.20 Relationship of AAL, Cover (SAVI) and Cell Count with Resolution 136
Figure 5.21 Relationship of AAL, Cover (STVI) and Cell Count with Resolution 137
Figure 5.22 Relationship of AAL, Cover (PD$_{rg}$) and Cell Count with Resolution 138
Figure 5.23 Effect of upscaling on Coverage .. 139
Figure 5.24 Calculated Leakiness response to change in resolution 139
Figure 5.25 Adjusted Average Leakiness (AAL) response to change in resolution 140
Figure 5.26 Comparison of response of transformed L$_{calc}$ with resolution 140
Figure 5.27 Projected leakiness response to change in resolution 141
Figure 5.28 Absolute difference between experimental and projected leakiness values ... 142
Figure 5.29 Fine scale projected and experimental leakiness 142
Figure 5.30 Separation of transformed leakiness at the 80m resolution break point 143
Figure 5.31 AAL and Semivariance dependence on Resolution for upscaled SAVI cover images ... 145
Figure 5.32 AAL and Semivariance dependence on Resolution for upscaled STVI cover images ... 145
Figure 5.33 AAL and Semivariance dependence on Resolution for upscaled PDrg image ... 146
Figure 5.34 Variance scalograms for upscaled SAVI, STVI and PDrg cover images .. 146
Figure 5.35 Comparison of native and upscaled leakiness for SAVI, STVI and PDrg coverages ... 148

CHAPTER 6

Figure 6.1 Plot of First Range (a0) against Nugget and Sill Variance (c+c0) 157
Figure 6.2 Semi Natural log plot of areal resolution against Nugget and Sill Variance (c+c0) for unscaled and upscaled NDVI images, 158
Figure 6.3 Variance analysis flow sequence .. 160
Figure 6.4 SAVI semivariance .. 162
Figure 6.5 SAVI native semivariance contours ... 163
Figure 6.6 SAVI native semivariance surface ... 163
Figure 6.7 SAVI native semivariance model .. 164
Figure 6.8 Native SAVI semivariance values as a function of resolution 166
Figure 6.9 Native SAVI semivariance values as a function of cell number 167
Figure 6.10 Native SAVI semivariance values and Lcalc ... 167
Figure 6.11 Native SAVI semivariance values and AAL .. 167
Figure 6.12 STVI semivariance variograms .. 168
Figure 6.13 STVI native semivariance contours .. 169
Figure 6.14 STVI native semivariance surface ... 169
Figure 6.15 STVI native semivariance model ... 170
Figure 6.16 Native STVI semivariance index response to resolution 172
Figure 6.17 Native STVI semivariance index response to catchment cell number 172
Figure 6.18 Native SAVI semivariance index response to average cover 173
Figure 6.19 Native STVI semivariance index response to Lcalc 173
Figure 6.20 Native STVI semivariance index response to AAL 173
Figure 6.21 PDrg semivariance variograms .. 174
Figure 6.22 PDrg native semivariance contours ... 175
Figure 6.23 PDrg native semivariance surface ... 175
Figure 6.24 PDrg native semivariance model ... 176
Figure 6.25 Native PDrg semivariance indices as a function of resolution 178
Figure 6.26 Native PDrg semivariance indices as a function of catchment cell No. 178
Figure 6.27 Native PDrg semivariance indices as a function of average cover 179
Figure 6.28 Native PDrg semivariance indices response to Lcalc 179
Figure 6.72 Semivariance of resampled PDrg (50-250m) ... 204
Figure 6.73 Contour plot PDrg semivariance (5-30m) .. 205
Figure 6.74 Contour plot PDrg semivariance (5-250m) .. 205
Figure 6.75 PDrg upscaled semivariance surface .. 205
Figure 6.76 PDrg upscale variance quadratic model... 206
Figure 6.77 PDrg upscale variance 3rd power polynomial model 206
Figure 6.78 PDrg upscale semivariance values as a function of resolution 208
Figure 6.79 PDrg upscale conventional semivariance values as a function of cell
number .. 209
Figure 6.80 PDrg upscale UPV semivariance values as a function of cell number. 209
Figure 6.81 PDrg upscale semivariance values as a function of average cover 210
Figure 6.82 PDrg upscale conventional semivariance values as a function of
leakiness ... 210
Figure 6.83 PDrg upscale UPV semivariance values as a function of leakiness 211
Figure 6.84 Semivariance of whole-of-catchment DEMs resampled from 5m to 250m
... 211
Figure 6.85 Upscaled DEM semivariance contours .. 212
Figure 6.86 Upscaled DEM semivariance surface ... 212
Figure 6.87 DEM upscale semivariance model ... 213
Figure 6.88 Semivariance of resampled DEMs) .. 213
Figure 6.89 Contour plot of semivariance of resampled 5m AP DEM 214
Figure 6.90 Relationship of revised upscaled DEM semivariance to lag and
resolution ... 215
Figure 6.91 Native Scale SAVI variograms ... 215
Figure 6.92 Upscale SAVI variograms .. 216
Figure 6.93 Overlay of native and upscaled SAVI image variograms 217
Figure 6.94 Comparison of variance contours for native (left) and upscaled (right)
... 217
Figure 6.95 Comparison of SAVI semivariance models ... 218
Figure 6.96 Native scale STVI variograms ... 220
Figure 6.97 Upscaled STVI variograms .. 220
Figure 6.98 Overlay of native and upscaled STVI image variograms 221
Figure 6.99 Comparison of variance contours for native (left) and upscaled (right)
STVI cover images .. 221
Figure 6.100 Comparison of STVI semivariance models ... 222
Figure 6.101 Native scale PDrg image variograms .. 224
Figure 6.102 Upscale PDrg image variograms ... 224
Figure 6.103 Comparison of PDrg native image variances with upscaled image
variances .. 225
Figure 6.104 Comparison of variance contours for native (left) and upscaled (right)
PDrg cover images ... 226
Figure 6.105 Comparison of PDrg semivariance models ... 226
Figure 6.106 Comparison of upscaled DEMs with native DEMs 226
Figure 6.107 Semivariance of whole of catchment DEMs resampled from 5m to 250m

Figure 6.108 Semivariance of resampled DEMs (solid lines) relative to the semivariance of native DEMs (dashed lines)

Figure 6.109 Variogram Index correlation relationships with Leakiness (Lcalc)

CHAPTER 7

Figure 7.1 General processing schema for applying cover treatments
Figure 7.2 Procedure for preparing the drainage line distance zones
Figure 7.3 Drainage line distance zones
Figure 7.4 Procedure for preparing the elevation zones
Figure 7.5 Elevation zones
Figure 7.6 Procedure for preparing the slope zones
Figure 7.7 Slope zones
Figure 7.8 Procedure for preparing the aspect zones
Figure 7.9 Aspect zones
Figure 7.10 Procedure for preparing the topographic zones
Figure 7.11 Topographic zones
Figure 7.12 Procedure for preparing the cover zones
Figure 7.13 SAVI cover zones
Figure 7.14 PDrg cover zones
Figure 7.15 Leakiness response to increase in SAVI coverage
Figure 7.16 Cover, slope and elevation of the DLD zones
Figure 7.17 Leakiness due to increase in SAVI cover at different distances from the drainage lines. (net increase in catchment cover)
Figure 7.18 Change in Leakiness due to increase in SAVI cover at different distances from the drainage lines. (net increase in catchment cover)
Figure 7.19 Response of leakiness to addition of SAVI cover by distance from drainage lines. (net increase in catchment cover)
Figure 7.20 Leakiness due to increase in SAVI cover at different distances from the drainage lines. (no net increase in catchment cover)
Figure 7.21 Change in Leakiness due to increase in SAVI cover at different distances from the drainage lines. (no net increase in catchment cover)
Figure 7.22 Response of leakiness to addition of SAVI cover by distance from drainage lines. (no net increase in catchment cover)
Figure 7.23 Leakiness due to increase in PDrg cover at different distances from the drainage lines (net increase in catchment cover)
Figure 7.24 Change in Leakiness due to increase in PDrg cover at different distances from the drainage lines (net increase in catchment cover)
Figure 7.25 Response of leakiness to addition of PDrg cover by distance from drainage lines (net increase in catchment cover)
Figure 7.26 Amount of leakiness due to change of PDrg cover by drainage line distance zone (no net increase in catchment cover)
Figure 7.27 Change in leakiness due to change in PDrg cover by drainage line distance zones (no net increase in catchment cover)...............................264
Figure 7.28 Response of leakiness to addition of PDrg cover by distance from drainage lines (no net increase in catchment cover)...............................264
Figure 7.29 Cover, slope and elevation of the elevation zones...........................265
Figure 7.30 Amount of leakiness due to increase in SAVI cover by elevation (net increase in catchment cover)...266
Figure 7.31 Change in Leakiness due to increase in SAVI cover by elevation zone (net increase in catchment cover)..267
Figure 7.32 Response of catchment leakiness to increase in SAVI cover by elevation (net increase in catchment cover)..267
Figure 7.33 Amount of leakiness due to change of SAVI cover by elevation (no net increase in catchment cover)...268
Figure 7.34 Change in Leakiness due to change of SAVI cover by elevation (no net increase in catchment cover)..268
Figure 7.35 Response of catchment leakiness to change of cover by elevation. (no net increase in catchment cover).................................269
Figure 7.36 Amount of leakiness due to change of PDrg cover by elevation zone (net increase in catchment cover)..270
Figure 7.37 Change in leakiness due to change in PDrg cover by elevation zone (net increase in catchment cover)..271
Figure 7.38 Response of leakiness to addition of PDrg cover by elevation zone (net increase in catchment cover)..271
Figure 7.39 Amount of leakiness due to change of PDrg cover by elevation zone (no net increase in catchment cover).................................272
Figure 7.40 Change in leakiness due to change in PDrg cover by elevation zone...272
Figure 7.41 Response of catchment leakiness to addition of PDrg cover by elevation zone. (no net increase in catchment cover)...............................273
Figure 7.42 Cover, slope and elevation of the slope zones.................................273
Figure 7.43 Amount of leakiness due to increase in SAVI cover by slope (net increase in catchment cover)...275
Figure 7.44 Change in Leakiness due to increase in SAVI cover by slope (net increase in catchment cover)...275
Figure 7.45 Response of leakiness to addition of SAVI cover by slope (net increase in catchment cover)...276
Figure 7.46 Amount of leakiness due to change of SAVI cover by slope (no net increase in catchment cover)...276
Figure 7.47 Change in Catchment Leakiness due to change of cover by slope (no net increase in catchment cover)...277
Figure 7.48 Response of catchment leakiness to change of cover by slope (no net increase in catchment cover)...277
Figure 7.49 Cover, slope and elevation of the aspect zones.................................278
Figure 7.50 Amount of leakiness due to increase in cover by aspect (net increase in catchment cover)...279
Figure 7.51 Change in Leakiness due to increase in cover by aspect (net increase in catchment cover) ... 280
Figure 7.52 Response of leakiness to addition of cover by aspect (net increase in catchment cover) ... 280
Figure 7.53 Amount of leakiness due to change of cover by aspect zone (no net increase in catchment cover) ... 281
Figure 7.54 Change in leakiness due to change in cover by aspect (no net increase in catchment cover) ... 281
Figure 7.55 Response of catchment leakiness to change of cover by aspect (no net increase in catchment cover) ... 281
Figure 7.56 Cover, slope and elevation of the landform zones .. 282
Figure 7.57 Absolute effect on leakiness of increasing SAVI cover in each landform zone (net cover increase scenario) ... 285
Figure 7.58 Relative effect of increasing SAVI cover in each landform zone on leakiness (net cover increase scenario) ... 285
Figure 7.59 Leakiness response to addition of SAVI cover by landform zone (net cover increase scenario) ... 286
Figure 7.60 Effect if increasing SAVI cover on landform zones on catchment leakiness (no net increase scenario) ... 287
Figure 7.61 Relative effect of increasing SAVI cover in each landform zone on leakiness (no net increase scenario) ... 287
Figure 7.62 Leakiness response to addition of SAVI cover by landform zone ... 288
Figure 7.63 Absolute effect on leakiness of increasing PDrg cover in each landform zone (net cover increase scenario) ... 289
Figure 7.64 Relative effect of increasing PDrg cover in each landform zone on catchment leakiness (net cover increase scenario) ... 290
Figure 7.65 Leakiness response to addition of PDrg cover by landform zone (net cover increase scenario) ... 290
Figure 7.66 Effect of increasing PDrg cover on landform zones on catchment leakiness (no net increase scenario) ... 291
Figure 7.67 Relative effect of increasing PDrg cover on landform zones on catchment leakiness (no net increase scenario) ... 291
Figure 7.68 Leakiness response to addition of PDrg cover by landform zone (no net increase scenario) ... 292
Figure 7.69 Cover, slope and elevation of the SAVI cover zones .. 292
Figure 7.70 Amount of Catchment leakiness due to increase in cover in different original SAVI cover zones (net increase in catchment cover) ... 294
Figure 7.71 Change in Catchment Leakiness due to increase in cover in different original SAVI cover zones (net increase in catchment cover) ... 294
Figure 7.72 Response of catchment leakiness to addition of SAVI cover by original cover zones (net increase in catchment cover) ... 295
Figure 7.73 Amount of catchment leakiness due to increase in cover in each original SAVI cover zone (no net increase in cover) ... 295
Figure 7.74 Change in Catchment leakiness due to increase in cover in different original cover zones (no net increase in catchment cover) 296
Figure 7.75 Response of catchment leakiness to addition ... 296
Figure 7.76 Cover, slope and elevation of the PDr g cover zones 297
Figure 7.77 Amount of catchment leakiness due to increase in PDr g cover in different original PDr g cover zones (net increase in catchment cover). 298
Figure 7.78 Change in catchment leakiness due to change in PDr g cover of original PDr g cover zones (net increase in catchment cover). 299
Figure 7.79 Response of catchment leakiness to addition of PDr g cover of original PDr g cover zone (net increase in catchment cover). 299
Figure 7.80 Amount of catchment leakiness due to change of PDr g cover by original PDr g cover zone ... 300
Figure 7.81 Change in catchment leakiness due to change of PDr g cover by original PDr g cover zone ... 300
Figure 7.82 Response of catchment leakiness to addition of PDr g cover by original PDr g cover zone ... 301
LIST OF TABLES

CHAPTER 2
Table 2-1 PATCHKEY parameter codes... 15
Table 2-2 LFA Indicators for Manual Field Assessment (Tongway and Hindley, 2004b)... 17
Table 2-3. Comparison of Landscape Function Indices for Leakiness................. 19
Table 2-4 Performance of selected vegetation indices in estimating vegetation on two arid land systems in South Australia (R²) (Jafari and Lewis et al. 2007).. 26
Table 2-5 Comparison of accuracy in assessing arid vegetation in central New Mexico by SMA and Regression (from Xiao and Moody (2005)) 28
Table 2-6. Scalogram equations for Figure 2.4 (Wu and Shen et al. 2002)......... 32
Table 2-7 Conventional variogram Indices (from (Lloyd 2010))...................... 43
Table 2-8 UPV Indices (partial list from Balaguer and Ruiz et al. (2010))......... 43

CHAPTER 3
Table 3-1 Catchment summary statistics ... 51
Table 3-2 Source imagery .. 56
Table 3-3 Rearrangement of MODIS bands for consistency with SPOT and Landsat spectral windows... 56
Table 3-4 DEM Overview details ... 57
Table 3-5 Accuracy comparison for 9 GCPT DTM against field elevation values and SRTM 1s DTM... 58
Table 3-6 Spectral bands in each images used to calculate vegetation cover indices 61

CHAPTER 4
Table 4-1 Vegetation Cover and Leakiness of the Experimental Catchment 82
Table 4-2 Correlation between Average Cover and Leakiness............................. 84
Table 4-3 Variation in catchment average cover across 3 resolutions.................... 90
Table 4-4 Sensitivity of Leakiness to type of Vegetation Cover Index 91
Table 4-5 Adjusted Average Leakiness values .. 92
Table 4-6 Sensitivity of AAL to Vegetation Cover Index 94
Table 4-7 Amount of Average Cover (%) in each sub-catchment (10m).............. 96
Table 4-8 Amount of Leakiness for each sub-catchment (10m)......................... 97
Table 4-9 Coefficients of Determination for Average Cover correlation (10m) 98
Table 4-10 Coefficients of Determination for Adjusted Average Leakiness correlation (10m)... 99
Table 4-11 Correlation between Average Cover and AAL (10m).................... 100
Table 4-12 Amount of Average Cover in each sub-catchment (25m) 100
Table 4-13 Amount of Adjusted Average Leakiness for each sub-catchment (25m) .. 101
Table 4-14 Coefficients of Determination for Average Cover correlation (25m) ... 103
Table 4-15 Coefficients of Determination for Adjusted Average Leakiness correlation (25m) .. 103
Table 4-16 Correlation between Average Cover and AA leakiness (25m) 105
Table 4-17 Amount of Average Cover in each sub-catchment (250m) 105
Table 4-18 Amount of Leakiness for each sub-catchment (250m) 105
Table 4-19 Coefficients of Determination for Average Cover correlation (250m) . 107
Table 4-20 Coefficients of Determination for Adjusted Average Leakiness correlation (250m) ... 108
Table 4-21 Correlation between Average Cover and AA Leakiness (250m) 109
Table 4-22 Summary of correlation of AAL with cover 110
Table 4-23 Consistency response pattern ... 110

CHAPTER 5

Table 5-1 Paired samples test for SAVI cover from upscaling image versus cover layer ... 128
Table 5-2 Wilcoxon Signed Rank test results for SAVI coverage leakiness 128
Table 5-3 Goodness of fit for PDrg Leakiness transformed 135
Table 5-4 Significance tests for linear and cubic AAL scalograms 138
Table 5-5 Significance levels for fine scale projected leakiness 143
Table 5-6 Comparison of Best Fit equations and their CoD (R^2) values 144

CHAPTER 6

Table 6-1 Equation 6-1 fit parameters .. 164
Table 6-2 Conventional Variogram indices for SAVI cover images 164
Table 6-3 UPV Variogram Indices for SAVI cover images 165
Table 6-4 Correlation (R^2) between SAVI native scale image variables and variogram indices ... 165
Table 6-5 Correlation (R^2) between SAVI native scale variogram indices 166
Table 6-6 Equation 6-2 fit parameters .. 170
Table 6-7 Conventional Variogram indices for STVI cover images 170
Table 6-8 UPV Variogram Indices for STVI cover images 170
Table 6-9 Correlation (R^2) between STVI native scale Image variables and all variables ... 171
Table 6-10 Correlation (R^2) between STVI native scale variogram indices 171
Table 6-11 Equation 6-3 fit parameters .. 175
Table 6-12 Conventional Variogram indices for PDrg cover images 176
Table 6-13 UPV Variogram Indices for PDrg cover images 176
Table 6-14 Correlation between PDrg native scale image variables and all variables (R^2) ... 177
Table 6-15 Correlation (R^2) between PDrg native scale variogram indices and all variables ... 177
Table 6-16 Equation 6-4 fit parameters ... 182
Table 6-17 UPV Variogram Indices for catchment DEM ... 183
Table 6-18 Correlation (R^2) of DEM variables .. 183
Table 6-19 Semivariance resolution expressions for native DEMs .. 185
Table 6-20 Equation 6-5 fit parameters ... 186
Table 6-21 Equation 6-6 fit parameters ... 191
Table 6-22 Conventional SAVI semivariogram indices for upscaled images ... 192
Table 6-23 UPV SAVI semivariogram indices for sub-catchments ... 192
Table 6-24 Correlation between SAVI upscale image variables and all variables (R^2) 193
Table 6-25 Equation 6-7 fit parameters ... 197
Table 6-26 STVI Conventional semivariogram indices ... 198
Table 6-27 STVI UPV semivariogram indices .. 198
Table 6-28 Correlation (R^2) between STVI upscale image variables and all variables (R^2) 199
Table 6-29 Equations 6-8 and 6-9 fit parameters ... 206
Table 6-30 PDrg Conventional semivariogram indices ... 207
Table 6-31 STVI UPV semivariogram indices .. 207
Table 6-32 Correlation (R^2) between PDrg upscale image variables .. 208
Table 6-33 Correlation between PDrg variogram indices (R^2) ... 208
Table 6-34 Equation 6-10 fit parameters ... 212
Table 6-35 Semivariance resolution expressions for resampled DEMs .. 214
Table 6-36 Comparison of native and upscaled SAVI variogram expressions ... 216
Table 6-37 Variables for native scale and upscaled SAVI semivariance models ... 218
Table 6-38 Correlation (R^2) of SAVI variance indices for native and upscaled images with leakiness ... 219
Table 6-39 Comparison of native and upscaled STVI variogram expressions ... 220
Table 6-40 Variables for native scale and upscaled STVI semivariances .. 222
Table 6-41 Correlation of STVI variance variables for native and upscaled images 223
Table 6-42 Comparison of native and upscaled PDrg variogram expressions ... 224
Table 6-43 PDrg model variable values ... 227
Table 6-44 Correlation between PDrg variables for native and upscaled images (R^2) 227
Table 6-45 Relationship between “native” scale DEMs and resampled AP DEM 229
Table 6-46 Key native image structural values (repeated from Table 6-2, Table 6-7, and Table 6-12 for convenience) ... 230
Table 6-47 Key upscale image structural values (from Table 6-22, Table 6-26 and Table 6-30 for convenience) ... 233
Table 6-48 Significant native image variogram correlations (from Table 6-9 and Table 6-14). .. 237
Table 6-49 Significant upscaled image variogram correlations (From Table 6-24, Table 6-28 and Table 6-32) ... 237

CHAPTER 7

Table 7-1 Analysis Plan for effect of Cover Location on Catchment leakiness 244
Table 7-2 Pro-forma calculation of pixel adjustment values for No offset and Offset scenarios ... 246
Table 7-3 Adjustment of SAVI average cover and Leakiness results 255
Table 7-4 SAVI drainage distance zone adjustment values 257
Table 7-5 PDrg drainage line distance zone adjustment values 261
Table 7-6 SAVI cover elevation zone adjustment values (continued) 265
Table 7-7 PDrg cover elevation zone adjustment values (continued) 269
Table 7-8 SAVI cover slope zone adjustment values 274
Table 7-9 SAVI cover aspect zone adjustment values (continued) 278
Table 7-10 Land form zone cover adjustments for SAVI (continued) 283
Table 7-11 Land form zone analysis results for SAVI cover 284
Table 7-12 Land form zone analysis results for SAVI cover 286
Table 7-13 Land form zone cover adjustments for PDrg (continued) 288
Table 7-14 Land form zone analysis results for PDrg cover 289
Table 7-15 Land form zone analysis results for PDrg cover 291
Table 7-16 SAVI Cover zone adjustment values (continued) 293
Table 7-17 PDrg Cover zone adjustment values (continued) 297
Table 7-18 Summary of zones in which cover is most effective in reducing catchment leakiness .. 308
Table 7-19 Overall Summary of Response of Leakiness to cover added by feature zones ... 310
PHOTOGRAPHS

Photograph 2-1 Aerial views of vegetation patterns in the experimental catchment, Patchy (left) and Banded (right) ... 11
Photograph 3-1 Savannah grass lands .. 52
Photograph 3-2 Iron Bark woodland .. 52
Photograph 3-3 Blue Gum creek flat .. 53
Photograph 3-4 Mixed Iron Bark and Blue Gum woodland .. 53
Photograph 3-5 Break-away gully in duplex savannah Sodosol soil 54
Photograph 3-6 Gravel ridge line lacking vegetative cover 54
Photograph 4-1 Resource leaky area .. 68
Photograph 4-2 Resource conserving area .. 68
APPENDICES

Appendix 1 Sub-catchment details at 3 resolutions ... 331
Appendix 2: Stereo Aerial Photo details .. 332
Appendix 3: Data Dictionary for GCP and PSM data collection ... 333
Appendix 4: Trimble Nomad and ProXH used for field data collection 334
Appendix 5. Elevation comparison between Geoid (WGS 84) and Ellipsoid (GRS 1980) 335
Appendix 6 Field Ground Reference Point Records ... 336
Appendix 7 Additional modifications made to PDI ... 340
Appendix 8. Effect of upscaling the image versus upscaling the SAVI thematic cover layer ... 341
Appendix 9. Effect of upscaling the image versus upscaling the STVI thematic cover layer ... 342
Appendix 10. Transformed and Predicted values .. 343
Appendix 11. Transformed and predicted values ... 344
Appendix 12 PDrg calculated Leakiness values .. 345
Appendix 13 Comparison of experimental and predicted .. 346
Appendix 14 Comparison of experimental and predicted .. 347
Appendix 15 Comparison of experimental and predicted PDrg AAL values 348
Appendix 16 Effect of upscaling on percent cover ... 349
Appendix 17 Calculated and Adjusted Average Leakiness .. 350
Appendix 18 Normalised calculated Leakiness values .. 351
Appendix 19 Comparison of experimental and projected leakiness values 352
Appendix 20 Fine upscale cover and leakiness values ... 353
Appendix 21. Leakiness and semivariance ... 354
Appendix 22. Leakiness and semivariance ... 355
Appendix 23. Native DEM semivariance matrix .. 356
Appendix 24 Reconstructed DEM semivariance matrix .. 356
Appendix 25. LC Settings .. 357
<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>AAL</td>
<td>Adjusted Average Leakiness</td>
</tr>
<tr>
<td>ABCD</td>
<td>Natural pasture condition categories</td>
</tr>
<tr>
<td>AFM</td>
<td>Area between the First lag and the First Maximum</td>
</tr>
<tr>
<td>APS</td>
<td>Aerial Photographs</td>
</tr>
<tr>
<td>ARVI</td>
<td>Atmospherically Resistance Vegetation Index</td>
</tr>
<tr>
<td>ASTER</td>
<td>Advanced Spaceborne Thermal Emission and Reflectiuon Radiometer</td>
</tr>
<tr>
<td>ATE</td>
<td>Advanced Terrain Extraction</td>
</tr>
<tr>
<td>AVG</td>
<td>Non-overlapping Averaging interpolation resampling</td>
</tr>
<tr>
<td>BIL</td>
<td>Bilinear interpolation resampling</td>
</tr>
<tr>
<td>BOTANAL</td>
<td>Pasture yield estimating procedure</td>
</tr>
<tr>
<td>CAI</td>
<td>Cellulose Absorption Index</td>
</tr>
<tr>
<td>CASI</td>
<td>Canadian AeroSpace Institute</td>
</tr>
<tr>
<td>CC</td>
<td>Cubic Convolution resampling</td>
</tr>
<tr>
<td>CDLI</td>
<td>Cover based Directional Leakiness Index</td>
</tr>
<tr>
<td>CEC</td>
<td>Cation Exchange Capacity</td>
</tr>
<tr>
<td>CoD</td>
<td>Coefficient of Determination (R^2)</td>
</tr>
<tr>
<td>CORVI</td>
<td>Corrected Vegetation Index</td>
</tr>
<tr>
<td>CSI</td>
<td>Cross Scale Interaction</td>
</tr>
<tr>
<td>DEM</td>
<td>Digital Elevation Model</td>
</tr>
<tr>
<td>DLI</td>
<td>Directional Leakiness Index</td>
</tr>
<tr>
<td>DN</td>
<td>Digital Number</td>
</tr>
<tr>
<td>DTM</td>
<td>Digital Terrain Model</td>
</tr>
<tr>
<td>EO-1</td>
<td>Observer 1 satellite</td>
</tr>
<tr>
<td>EROS</td>
<td>Earth Resources Observation Center</td>
</tr>
<tr>
<td>ETM+</td>
<td>Enhanced Thematic Mapper plus</td>
</tr>
<tr>
<td>FCI</td>
<td>Fractional Cover Index</td>
</tr>
<tr>
<td>FDO</td>
<td>First Derivative near the Origin</td>
</tr>
<tr>
<td>FETEX</td>
<td>Feature Extraction software</td>
</tr>
<tr>
<td>FML</td>
<td>First Maximum Lag</td>
</tr>
<tr>
<td>FPC</td>
<td>Foliage Projective Cover</td>
</tr>
<tr>
<td>FR</td>
<td>First Range</td>
</tr>
<tr>
<td>FSV</td>
<td>First Sill semi-Variance</td>
</tr>
<tr>
<td>GC</td>
<td>Ground Cover</td>
</tr>
<tr>
<td>GCI</td>
<td>Ground Cover Index</td>
</tr>
<tr>
<td>GCPs</td>
<td>Ground Control Points</td>
</tr>
<tr>
<td>GloVis</td>
<td>USGS Global Visualisation Viewer</td>
</tr>
</tbody>
</table>
GPS............ Global Positioning System
GRPs........... Ground Reference Points
GRS............ Geodetic Reference Spheroid
HJ-1............ Name of Chinese satellite
HRVIR.......... High Resolution Visible Infra-Red
HIS............ Hyper Spectral Imager
IR............. Infra-Red
LC............... Leakiness calculator
Lcalc.......... Leakiness calculated
LFI............. Landscape Function Index
LI............... Leakiness Index
LISEM......... Limburg Soil Erosion Model
LPS............. Leica Photogrammetry Suite
M............. Majority resampling
MAE........... Mean Average Error
MAUP......... Modifiable Areal Unit Problem
MCSMA........ Monte Carlo Spectral Mixture Analysis
MDLI........... Modified Directional Leakiness Index
MERIS......... Medium Resolution Imaging Spectrometer
MFM.......... Mean of the semivariogram up to the First Maximum
MGA........... Map Grid of Australia
MODIS......... Moderate Resolution Imaging Spectrometer
MRBGI......... Multiple Regression Bare Ground Index
MSDI......... Moving Standard Deviation Index
MSS......... Multi Spectral Scanner
MTF........... Multi-Scale Transfer Function
NDVI......... Normalised Difference Vegetation Index
NIR........ Near Infra-Red
NLWRA......... National Land and Water Resources Audit
NN......... Nearest Neighbour interpolation Resampling
NPV......... Non-Photosynthetic Vegetation
NQ DTNRMB.. North Queensland Dry Tropics Natural Resources Management Body
NSCVR....... Nugget to Spatially Correlated Variance Ratio
NSVR....... Nugget to Sill Variance Ratio
NV......... Nugget Variance
ORIMA......... Leica Orientation Management software
PATCHKEY..... A native pasture analysis procedure
PD54......... Perpendicular Distance of band 5 over band 4
PD57......... Perpendicular Distance of band 5 over band 7
PDI........ Perpendicular Distance Indices
PD$_{rg}$ Perpendicular Distance of red band over green band
PD$_{rn}$ Perpendicular Distance of the red band over the NIR band
PD$_{rs}$ Perpendicular Distance of the red band over the SWIR band
PMF Pixel Modular Transfer Function
ProXH A brand of Trimble GNSS antennae
PS Point Support
PSF Point Spread Function
PSMs Permanent Survey Marker
PV Photosynthetic Vegetation
PVI-3 Perpendicular Vegetation Index number
QDERM Queensland Department of Environment and Resource Management
Q-GRAZE A proprietary pasture quality assessment software
QNRGC Queensland Natural Resources Groups Cooperative
R Range
RGB Red Green Blue
RI Redness Index (vegetation cover)
RMS Root Mean Squared
RSF Ratio of Second to First lags
RUP Round Kernel Variance Weighted Upscaling resampling
RVF Ratio Variance at First lag
SAGA System for Automated Geoscientific Analysis
SARVI Soil and Atmospherically Resistance Vegetation Index
SAVI Soil Adjusted Vegetation Index
SCV Spatially Correlated Variance
SD Standard Deviation
SLATS Statewide Landuse and Trees Study
SMA Spectral Mixture Analysis
SR Second Range
SRTM 1s Shuttle Radar Topography Mission one second resolution
SRTM3 Shuttle Radar Topography Mission three second resolution
SSC Soil Surface Conditions
STVI-4 Stress related Vegetation Index #4
SUP Square Kernel Variance Weighted Upscaling resampling
SV Sill Variance
SWIR Short Wavelength Infra Red
TERN Terrestrial Ecosystem Research Network
TEXTNN Textural Neural Network
THREDDS A proprietary data server operated by Unidata
TM Thermatic Mapper
TRAPS Transect Recording and Processing System
TTRP........ Trigger Transfer Reserve Pulse
UPV......... Universidad Politecnica de Valencia
VAST........ Vegetation Assets, States and Transition
VC........... Vegetative Cover
VLS......... Variance Leakiness Scalograms
VW........... Variance Weighted resampling
WGS......... World Geodetic System