Real-time control approaches for site-specific irrigation and fertigation optimisation

Dr Alison McCarthy, Dr Tai Nguyen and Professor Steven Raine

National Centre for Engineering in Agriculture
Institute for Agriculture and the Environment
mccarthy@usq.edu.au
Real-time irrigation and fertiliser control

- Adapts to different crops, weather, soil, irrigation systems and water availability
- Considers spatial variability in irrigation and nutrient requirements
- Runs on remote server
- Internet-enabled sensors
Sensor-based control of irrigation timing

- Soil moisture regulation
- Temperature sensors to detect stress point
- May not be robust to data and water unavailability
Learning control

- Uses sensor feedback without a model to perform optimisation

**Iterative Learning Control (ILC):**
- Uses error between the *measured* and *desired* soil moisture deficit after the previous irrigation,
- . . . to *adjust* the irrigation volume of the next irrigation event.
- ‘Learns’ from history of prior error signals to make better adjustments.

**Iterative Hill Climbing Control (IHCC):**
- Tests different irrigation volumes in ‘test cells’ to determine which volume produced desired response

**Typically low data requirements**
Model predictive control

- Iteratively executes model to optimise process inputs rather than numerical operation on the model
- A calibrated crop model simulates and predicts the next required irrigation, i.e. volumes and timings
  - according to evolving crop/soil/weather input
  - separately for all cells/zones
  - can choose alternative end-of-season predicted targets
- High data requirements
- Off-the-shelf, black box industry models may not be updated
Artificial intelligence (AI)

- Artificial neural networks can be used for developing models from large datasets if explicit knowledge is acquired and represented in the knowledge base.
- Existing strategies consider soil moisture and economics, not crop production.
- Inbuilt self-learning capability.
- Evolutionary computation used for optimisation.
Artificial intelligence system for learning crop dynamics and optimising inputs
Hybrid artificial intelligence system for irrigation and fertigation

- Artificial Neural Network (ANN) used for training and predicting crop dynamics based on historical and real-time infield data
- Weather and soil data input used for preliminary development
ANN trained using field and simulation data

Field data
- Input: soil-water data 30cm layer
- Output: soil-water(%) prediction

Simulation data
- Input: irrigation, fertiliser, yield, crop vegetation and fruiting
- Output: bolls, yield, fertiliser
ANN prediction using field data
ANN prediction using simulation data
Conclusion

- Evaluating irrigation control strategies using learning and model predictive control
- Artificial intelligence has potential for use as self-learning crop model for irrigation and fertigation
- Training datasets from Internet-enabled sensors
Acknowledgements

- Cotton Research and Development Corporation
- University of Southern Queensland’s Strategic Research Fund